SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gejl Kasper D) "

Sökning: WFRF:(Gejl Kasper D)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jensen, Line, et al. (författare)
  • Carbohydrate restricted recovery from long term endurance exercise does not affect gene responses involved in mitochondrial biogenesis in highly trained athletes
  • 2015
  • Ingår i: Physiological Reports. - : Wiley. - 2051-817X. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim was to determine if the metabolic adaptations, particularly PGC-1a and downstream metabolic genes were affected by restricting CHO following an endurance exercise bout in trained endurance athletes. A second aim was to compare baseline expression level of these genes to untrained. Elite endurance athletes (VO2max 66 ± 2 mL·kg-1·min-1, n = 15) completed 4 h cycling at ~56% VO2max. During the first 4 h recovery subjects were provided with either CHO or only H2O and thereafter both groups received CHO. Muscle biopsies were collected before, after, and 4 and 24 h after exercise. Also, resting biopsies were collected from untrained subjects (n = 8). Exercise decreased glycogen by 67.7 ± 4.0% (from 699 ± 26.1 to 239 ± 29.5 mmol·kg-1·dw-1) with no difference between groups. Whereas 4 h of recovery with CHO partly replenished glycogen, the H2O group remained at post exercise level; nevertheless, the gene expression was not different between groups. Glycogen and most gene expression levels returned to baseline by 24 h in both CHO and H2O. Baseline mRNA expression of NRF-1, COX-IV, GLUT4 and PPAR-α gene targets were higher in trained compared to untrained. Additionally, the proportion of type I muscle fibers positively correlated with baseline mRNA for PGC-1α, TFAM, NRF-1, COX-IV, PPAR-α, and GLUT4 for both trained and untrained. CHO restriction during recovery from glycogen depleting exercise does not improve the mRNA response of markers of mitochondrial biogenesis. Further, baseline gene expression of key metabolic pathways is higher in trained than untrained.
  •  
2.
  • Cardinale, Daniele A, et al. (författare)
  • Reliability of maximal mitochondrial oxidative phosphorylation in permeabilized fibers from the vastus lateralis employing high-resolution respirometry.
  • 2018
  • Ingår i: Physiological Reports. - : Wiley. - 2051-817X. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose was to assess the impact of various factors on methodological errors associated with measurement of maximal oxidative phosphorylation (OXPHOS) in human skeletal muscle determined by high-resolution respirometry in saponin-permeabilized fibers. Biopsies were collected from 25 men to assess differences in OXPHOS between two muscle bundles and to assess the correlation between OXPHOS and the wet weight of the muscle bundle. Biopsies from left and right thighs of another five subjects were collected on two occasions to compare limbs and time-points. A single muscle specimen was used to assess effects of the anesthetic carbocaine and the influence of technician. The difference in OXPHOS between two fiber-bundles from the same biopsy exhibited a standard error of measurement (SEM) of 10.5 pmol · s-1  · mg-1 and a coefficient of variation (CV) of 15.2%. The differences between left and right thighs and between two different time-points had SEMs of 9.4 and 15.2 pmol · s-1  · mg-1 and CVs of 23.9% and 33.1%, respectively. The average (±SD) values obtained by two technicians monitoring different bundles of fibers from the same biopsy were 31.3 ± 7.1 and 26.3 ± 8.1 pmol · s-1  · mg-1 . The time that elapsed after collection of the biopsy (up to a least 5 h in preservation medium), wet weight of the bundle (from 0.5 to 4.5 mg) and presence of an anesthetic did not influence OXPHOS. The major source of variation in OXPHOS measurements is the sample preparation. The thigh involved, time-point of collection, size of fiber bundles, and time that elapsed after biopsy had minor or no effect.
  •  
3.
  • Cardinale, Daniele A., 1982-, et al. (författare)
  • Short term intensified training temporarily impairs mitochondrial respiratory capacity in elite endurance athletes.
  • 2021
  • Ingår i: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 131:1, s. 388-400
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: The maintenance of healthy and functional mitochondria is the result of a complex mitochondrial turnover and herein quality-control program which includes both mitochondrial biogenesis and autophagy of mitochondria. The aim of this study was to examine the effect of an intensified training load on skeletal muscle mitochondrial quality control in relation to changes in mitochondrial oxidative capacity, maximal oxygen consumption and performance in highly trained endurance athletes.METHODS: 27 elite endurance athletes performed high intensity interval exercise followed by moderate intensity continuous exercise 3 days per week for 4 weeks in addition to their usual volume of training. Mitochondrial oxidative capacity, abundance of mitochondrial proteins, markers of autophagy and antioxidant capacity of skeletal muscle were assessed in skeletal muscle biopsies before and after the intensified training period.RESULTS: The intensified training period increased several autophagy markers suggesting an increased turnover of mitochondrial and cytosolic proteins. In permeabilized muscle fibers, mitochondrial respiration was ~20 % lower after training although some markers of mitochondrial density increased by 5-50%, indicative of a reduced mitochondrial quality by the intensified training intervention. The antioxidative proteins UCP3, ANT1, and SOD2 were increased after training, whereas we found an inactivation of aconitase. In agreement with the lower aconitase activity, the amount of mitochondrial LON protease that selectively degrades oxidized aconitase, was doubled.CONCLUSION: Together, this suggests that mitochondrial respiratory function is impaired during the initial recovery from a period of intensified endurance training while mitochondrial quality control is slightly activated in highly trained skeletal muscle.
  •  
4.
  • Gejl, Kasper D., et al. (författare)
  • Changes in metabolism but not myocellular signaling by training with CHO-restriction in endurance athletes
  • 2018
  • Ingår i: Physiological Reports. - : Wiley. - 2051-817X. ; 6:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbohydrate (CHO) restricted training has been shown to increase the acute training response, whereas less is known about the acute effects after repeated CHO restricted training. On two occasions, the acute responses to CHO restriction were examined in endurance athletes. Study 1 examined cellular signaling and metabolic responses after seven training-days including CHO manipulation (n = 16). The protocol consisted of 1 h high-intensity cycling, followed by 7 h recovery, and 2 h of moderate-intensity exercise (120SS). Athletes were randomly assigned to low (LCHO: 80 g) or high (HCHO: 415 g) CHO during recovery and the 120SS. Study 2 examined unaccustomed exposure to the same training protocol (n = 12). In Study 1, muscle biopsies were obtained at rest and 1 h after 120SS, and blood samples drawn during the 120SS. In Study 2, substrate oxidation and plasma glucagon were determined. In Study 1, plasma insulin and proinsulin C-peptide were higher during the 120SS in HCHO compared to LCHO (insulin: 0 min: +37%; 60 min: +135%; 120 min: +357%, P = 0.05; proinsulin C-peptide: 0 min: +32%; 60 min: +52%; 120 min: +79%, P = 0.02), whereas plasma cholesterol was higher in LCHO (+15-17%, P = 0.03). Myocellular signaling did not differ between groups. p-AMPK and p-ACC were increased after 120SS (+35%, P = 0.03; +59%, P = 0.0004, respectively), with no alterations in p-p38, p-53, or p-CREB. In Study 2, glucagon and fat oxidation were higher in LCHO compared to HCHO during the 120SS (+26-40%, P = 0.03; +44-76%, P = 0.01 respectively). In conclusion, the clear respiratory and hematological effects of CHO restricted training were not translated into superior myocellular signaling after accustomization to CHO restriction.
  •  
5.
  • Gejl, Kasper D., et al. (författare)
  • Contractile Properties of MHC I and II Fibers From Highly Trained Arm and Leg Muscles of Cross-Country Skiers
  • 2021
  • Ingår i: Frontiers in Physiology. - : Frontiers Media S.A.. - 1664-042X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about potential differences in contractile properties of muscle fibers of the same type in arms and legs. Accordingly, the present study was designed to compare the force-generating capacity and Ca2+ sensitivity of fibers from arm and leg muscles of highly trained cross-country skiers. Method: Single muscle fibers of m. vastus lateralis and m. triceps brachii of 8 highly trained cross-country skiers were analyzed with respect to maximal Ca2+-activated force, specific force and Ca2+ sensitivity. Result: The maximal Ca2+-activated force was greater for MHC II than MHC I fibers in both the arm (+62 %, P < 0.001) and leg muscle (+77 %, P < 0.001), with no differences between limbs for each MHC isoform. In addition, the specific force of MHC II fibers was higher than that of MHC I fibers in both arms (+41 %, P = 0.002) and legs (+95 %, P < 0.001). The specific force of MHC II fibers was the same in both limbs, whereas MHC I fibers from the m. triceps brachii were, on average, 39% stronger than fibers of the same type from the m. vastus lateralis (P = 0.003). pCa50 was not different between MHC I and II fibers in neither arms nor legs, but the MHC I fibers of m. triceps brachii demonstrated higher Ca2+ sensitivity than fibers of the same type from m. vastus lateralis (P = 0.007). Conclusion: Comparison of muscles in limbs equally well trained revealed that MHC I fibers in the arm muscle exhibited a higher specific force-generating capacity and greater Ca2+ sensitivity than the same type of fiber in the leg, with no such difference in the case of MHC II fibers. These distinct differences in the properties of fibers of the same type in equally well-trained muscles open new perspectives in muscle physiology.
  •  
6.
  • Gejl, Kasper D., et al. (författare)
  • Local depletion of glycogen with supra-maximal exercise in human skeletal muscle fibres
  • 2017
  • Ingår i: Journal of Physiology. - 0022-3751 .- 1469-7793. ; 595:9, s. 2809-2821
  • Tidskriftsartikel (refereegranskat)abstract
    • Skeletal muscle glycogen is heterogeneous distributed in three separated compartments (intramyofibrillar, intermyofibrillar and subsarcolemmal). Although only constituting 4-15% of the total glycogen volume, the availability of intramyofibrillar glycogen has been shown to be of particular importance to muscle function. The present study was designed to investigate the depletion of these three sub-cellular glycogen compartments during repeated supra-maximal exercise in elite athletes. Ten elite cross-country skiers (age: 25 +/- 4 yrs., VO2 max : 65 +/- 4 ml kg-1 min-1 , mean +/- SD) performed four approximately 4-minute supra-maximal sprint time trials (STT 1-4) with 45 min recovery. The sub-cellular glycogen volumes in m. triceps brachii were quantified from electron microscopy images before and after both STT 1 and STT 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type I fibres (-52% [-89:-15%]) than type 2 fibres (-15% [-52:22%]) (P = 0.02), while the depletion of intermyofibrillar glycogen (main effect: -19% [-33:0], P = 0.006) and subsarcolemmal glycogen (main effect: -35% [-66:0%], P = 0.03) was similar between fibre types. In contrast, only intermyofibrillar glycogen volume was significantly reduced during STT 4, in both fibre types (main effect: -31% [-50:-11%], P = 0.002). Furthermore, for each of the sub-cellular compartments, the depletion of glycogen during STT 1 was associated with the volumes of glycogen before STT 1. In conclusion, the depletion of spatially distinct glycogen compartments differs during supra-maximal exercise. Furthermore, the depletion changes with repeated exercise and is fibre type-dependent. 
  •  
7.
  •  
8.
  • Nielsen, Joachim, et al. (författare)
  • Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle
  • 2017
  • Ingår i: Journal of Physiology. - 0022-3751 .- 1469-7793. ; 595:9, s. 2839-2847
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial energy production involves the movement of protons down a large electrochemical gradient via ATP synthase located on the folded inner membrane, known as cristae. In mammalian skeletal muscle, the density of cristae in mitochondria is assumed to be constant. However, recent experimental studies have shown that respiration per mitochondria varies. Modelling studies have hypothesized that this variation in respiration per mitochondria depends on plasticity in cristae density, although current evidence for such a mechanism is lacking. In the present study, we confirm this hypothesis by showing that, in human skeletal muscle, and in contrast to the current view, the mitochondrial cristae density is not constant but, instead, exhibits plasticity with long-term endurance training. Furthermore, we show that frequently recruited mitochondria-enriched fibres have significantly increased cristae density and that, at the whole-body level, muscle mitochondrial cristae density is a better predictor of maximal oxygen uptake rate than muscle mitochondrial volume. Our findings establish an elevating mitochondrial cristae density as a regulatory mechanism for increasing metabolic power in human skeletal muscle. We propose that this mechanism allows evasion of the trade-off between cell occupancy by mitochondria and other cellular constituents, as well as improved metabolic capacity and fuel catabolism during prolonged elevated energy requirements.
  •  
9.
  • Örtenblad, Niels, et al. (författare)
  • Repeated sprint exercise impairs contractile force of isolated single human muscle fibers
  • 2013
  • Ingår i: Proceedings for the 6<sup>th</sup> International Congress on Science and Skiing. - 9783200034174 ; , s. 93-
  • Konferensbidrag (refereegranskat)abstract
    • INTRODUCTION: The purpose of the present study was, to examine the effects of repeated sprint skiing on the contractile apparatus of single muscle fibres obtained from a group of elite skiers. We have recently demonstrated that prolonged cycling exercise impairs the contractile apparatus of single muscle fibres, and that this can be restored following recovery. However, little is known about the effect of repeated high intensity exercise on single fibre properties, as i.e. during cross-country (cc) sprint competitions. We hypothesize that repeated high intensity exercise in highly trained subjects will impair the contractile apparatus maximum force output.METHOD: Eleven elite male sprint talented cc skiers (age 24 ± 4 years; VO2max 5.1 ± 0.5 (diagonal skiing, DIA), 4.9 ± 0.5 (double pooling, DP) L·min-1)) volunteered for the study. The skiers performed a simulated intermittent classic sprint roller skiing competition on a treadmill. The sprint exercise included 4 times1300m, with 45 min recovery between sprints. Each sprint consisted of 3 DP sections (1° uphill) and 2 DIA sections (7° uphill). Muscle biopsies were obtained in arm muscle (m. biceps brachii) before and after the sprint exercises. Muscle fibre bundles were cooled and skinned in a glycerinating solution and stored until analyzed. Single muscle fibre segments (n=232) were isolated and attached to a sensitive force recording transducer, and activated by Ca2+ buffered solutions at pH 7.1 to measure mechanically properties (maximum force Po and Po/cross sectional area (CSA)) and fibre typed by the Sr2+ sensitivity (Hvid et al. 2013).RESULTS: Average sprint time was 3min 49s ± 9s, with no difference between sprints. A total of 232 fibres were analysed (150 type I and 82 type II fibres). Type II fibres had a sign. (P<0.05) higher CSA (8103 ± 2334 µm2 (type I) and 8852 ± 2288 µm2 (type II) and Po (0.82 ± 0.43 and 1.24 ± 0.50 mN) than type I fibres. Also type II fibres had a 31% higher Po/CSA (108 ± 55 vs 142 ± 45 kN/m2). Following the intermittent sprint exercise, type II fibres exhibited a sign. (P = 0.01) 20% decrease in Po, with no difference in type I fibres. To test if the decrease in the single fibre Po were associated with oxidative stress we tested if this could be reversed with a strong reducing agent (dithiothreitol, DTT). DTT did not alter Po at pre nor the decrease in type II fibres following sprint exercise.DISCUSSION: By using a translational approach from whole body exercise to single fibre measurements, we here we demonstrate that type II fibres from highly trained cross country skiers, has a 20% decrease in Po following repeated sprint. Thus, part of the experienced fatigue following sprint competitions is due to impairments at the level of the contractile apparatus. Further, we did not find any evidence for oxidative stress as a causative component in the observed decrease in Po.CONCLUSION: Here we demonstrate for the first time, in highly trained sprint skiers, that repeated sprint impairs single fibre maximum force at the level of the contractile apparatus, which may have a significant impact on muscle function and fatigue.REFERENCES: Gejl K, Hvid LG, Ulrik Frandsen U, Jensen K, Sahlin K and Ørtenblad N. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med. Sci. Sports Ex. (2013).
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy