SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Genevskiy Vladislav) "

Sökning: WFRF:(Genevskiy Vladislav)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aleksejeva, Olga, et al. (författare)
  • Dual-feature photobioanodes based on nanoimprint lithography for photoelectric biosupercapacitors
  • 2022
  • Ingår i: Journal of Power Sources. - : Elsevier. - 0378-7753 .- 1873-2755. ; 517
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct transformation of solar energy into electrical energy by means of biological photosynthesis is considered as an attractive option for sustainable electrical energy production. Thylakoid membranes, the site of photosynthesis, are regarded as a promising biological material for the development of photoelectric biodevices, which produce electrical power consuming only light energy as oxygen evolves at photobioanode upon irradiation and biocathode converts it back to water. Therefore, in this work dual-feature photobioanode based on nanoimprinted gold substrates modified with thylakoids in combination with a capacitive part made of a planar gold substrate coated with a conductive polymer was designed and evaluated, providing open-circuit potential of -0.21 V vs. Ag vertical bar AgCl vertical bar KClsat and a capacitance of ca. 60 F m(-2) both at ambient light and artificial illumination of 400 W m(-2). Combination of thylakoid based dual-feature photobioanode with bilirubin oxidase modified transparent and capacitive indium tin oxide biocathode resulted in a photoelectric biosupercapacitor with remarkable characteristics at ambient light, viz. an open-circuit voltage as high as 0.74 V, which was stable upon charge-discharge cycles during ca. 2 h.
  •  
2.
  • Aleksejeva, Olga, et al. (författare)
  • Photobioanodes Based on Nanoimprinted Electrodes and Immobilized Chloroplasts
  • 2022
  • Ingår i: ChemElectroChem. - : John Wiley & Sons. - 2196-0216. ; 9:2, s. 37-42
  • Tidskriftsartikel (refereegranskat)abstract
    • As the global energy demand continues to increase, the interest in photosynthetic energy conversion is growing accordingly. Chloroplasts, photosynthetic organelles present in plants and algae, are attractive candidates for construction of bio solar cells; however, they have been less studied because of their complex membrane system, which restricts electrochemical communication with an electrode surface. Nevertheless, in this work photobioanodes based on planar and nanoimprinted gold substrates modified with chloroplasts were designed and evaluated. Apparently, nanoimprint lithography contributed to higher photocurrent densities, not only owing to the enlarged real surface area, but also due to boosting electrochemical communication between the photosynthetic organelles and the electrode. Combining chloroplast-modified nanoimprinted gold electrodes with a capacitive part made of a planar gold substrate, coated with a conductive polymer, resulted in a dual-feature photobioanode providing a lower open-circuit potential, i. e., -0.11 V vs. Ag|AgCl|KClsat, and an enhanced capacitance of ca. 37 F m(-2) upon illumination of 400 W m(-2).
  •  
3.
  • Genevskiy, Vladislav, et al. (författare)
  • Water sorption properties and nanostructures of airway mucus in patients with COPD and cystic fibrosis
  • 2022
  • Ingår i: European Respiratory Journal. - : EUROPEAN RESPIRATORY SOC JOURNALS LTD. - 0903-1936 .- 1399-3003. ; 60:Suppl 66
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Muco-obstructive diseases lead to hypersecretion, changing the airway mucus properties, and impairing mucociliary transport, resulting in mucostasis, and increasing infection likelihood. Mucin structure may determine the water sorption properties of mucus and play a role in chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF).Objectives: Investigate the sorption properties and mucin nanostructures in mucus collected from healthy, COPD and CF airways.Methods: To investigate mucin nanostructures, small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) were used. Sorption properties were determined by quartz crystal microbalance with dissipation (QCM-D). Cell-culture (cc) samples from healthy airway mucus (HAM), COPD and CF cultures, and patient HAM from endotracheal tubes and COPD from bronchoscopy were used. Patient mucus was oven-dried at 80°C for the solids content.Results: SAXS and AFM revealed mucin monomers with typical dumbbell structures and varying chain lengths, CF mucins having the shortest chain lengths. Dry-weight solids reached 11wt% in COPD mucus. From QCM-D analysis, cc-COPD and COPD mucus had the highest water content (67 and 75%) during sorption at 99% humidity compared with cc-HAM and HAM (63 and 56%). The overall sorption isotherm for cc-CF mucus was notably lower than HAM and COPD. In low-humidity environments, no hydration-induced glass transition was observed, suggesting mucus remains in a rubbery state.Conclusions: Mucin nanostructures observed in disease could explain the sorption properties where mucin chains affect water content in high humidity environments, which may play a role in protecting the epithelium.
  •  
4.
  • Kelly, Susyn J, et al. (författare)
  • Water Sorption and Structural Properties of Human Airway Mucus in Health and Muco-Obstructive Diseases.
  • 2024
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 25:3, s. 1578-1591
  • Tidskriftsartikel (refereegranskat)abstract
    • Muco-obstructive diseases change airway mucus properties, impairing mucociliary transport and increasing the likelihood of infections. To investigate the sorption properties and nanostructures of mucus in health and disease, we investigated mucus samples from patients and cell cultures (cc) from healthy, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) airways. Atomic force microscopy (AFM) revealed mucin monomers with typical barbell structures, where the globule to spacer volume ratio was the highest for CF mucin. Accordingly, synchrotron small-angle X-ray scattering (SAXS) revealed more pronounced scattering from CF mucin globules and suggested shorter carbohydrate side chains in CF mucin and longer side chains in COPD mucin. Quartz crystal microbalance with dissipation (QCM-D) analysis presented water sorption isotherms of the three types of human airway mucus, where, at high relative humidity, COPD mucus had the highest water content compared to cc-CF and healthy airway mucus (HAM). The higher hydration of the COPD mucus is consistent with the observation of longer side chains of the COPD mucins. At low humidity, no dehydration-induced glass transition was observed in healthy and diseased mucus, suggesting mucus remained in a rubbery state. However, in dialyzed cc-HAM, a sorption-desorption hysteresis (typically observed in the glassy state) appeared, suggesting that small molecules present in mucus suppress the glass transition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy