SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Genrup Magnus) "

Sökning: WFRF:(Genrup Magnus)

  • Resultat 1-10 av 69
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fast, Magnus, et al. (författare)
  • A Novel Approach For Gas Turbine Condition Monitoring Combining Cusum Technique And Artificial Neural Network
  • 2009
  • Ingår i: Proceedings Of The Asme Turbo Expo 2009, Vol 1. - 9780791848821 ; , s. 567-574
  • Konferensbidrag (refereegranskat)abstract
    • Investigation of a novel condition monitoring approach, combining artificial neural network (ANN) with a sequential analysis technique, has been reported in this paper. For this purpose operational data from a Siemens SGT600 gas turbine has been employed for the training of an ANN model. This ANN model is subsequently used for the prediction of performance parameters of the gas turbine. Simulated anomalies are introduced on two different sets of operational data, acquired one year apart, whereupon this data is compared with corresponding ANN predictions. The cumulative sum (CUSUM) technique is used to improve and facilitate the detection of such anomalies in the gas turbine's performance. The results are promising, displaying fast detection of small changes and detection of changes even for a degraded gas turbine.
  •  
2.
  • Ahlgren, Fredrik, 1980-, et al. (författare)
  • Energy integration of organic rankine cycle, exhaust gas recirculation and scrubber
  • 2018
  • Ingår i: Trends and challenges in maritime energy management. - Cham, Switzerland : Springer. - 9783319745756 - 9783319745763 ; , s. 157-168
  • Bokkapitel (refereegranskat)abstract
    • The vast majority of ships trafficking the oceans are fuelled by residual oil with high content of sulphur, which produces sulphur oxides (SOx) when combusted. Additionally, the high pressures and temperatures in modern diesel engines also produce nitrogen oxides (NOx). These emissions are both a hazard to health and the local environment, and regulations enforced by the International Maritime Organization (IMO) are driving the maritime sector towards the use of either distillate fuels containing less sulphur, or the use of exhaust gas cleaning devices.TwocommontechniquesforremovingSOx andlimitingNOx aretheopen loop wet scrubber and exhaust gas recirculation (EGR). A scrubber and EGR installation reduces the overall efficiency of the system as it needs significant pumping power, which means that the exhaust gases are cleaner but at the expense of higher CO2 emissions. In this paper we propose a method to integrate an exhaust gas cleaning device for both NOx and SOx with an organic Rankine cycle for waste heat recovery, thereby enhancing the system efficiency. We investigate three ORC configurations, integrated with the energy flows from both an existing state-of-the-art EGR system and an additional open loop wet scrubber.
  •  
3.
  • Ahlgren, Fredrik, 1980-, et al. (författare)
  • Waste Heat Recovery in a Cruise Vessel in the Baltic Sea by Using an Organic Rankine Cycle : A Case Study
  • 2015
  • Ingår i: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. - : ASME Press. - 9780791856673 ; , s. 43392-43416
  • Konferensbidrag (refereegranskat)abstract
    • Maritime transportation is a significant contributor to SOx, NOx and particle matter emissions, even though it has a quite low CO2 impact. New regulations are being enforced in special areas that limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry towards the improvement of the energy efficiency of current ship engines and the reduction of their energy demand. Although more sophisticated and complex engine designs can improve significantly the efficiency of the energy systems in ships, waste heat recovery arises as the most influent technique for the reduction of the energy consumption. In this sense, it is estimated that around 50% of the total energy from the fuel consumed in a ship is wasted and rejected in fluid and exhaust gas streams. The primary heat sources for waste heat recovery are the engine exhaust and the engine coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines exhaust heat. Experimental data from the operating conditions of the engines on the M/S Birka Stockholm cruise ship were logged during a port-to-port cruise from Stockholm to Mariehamn over a period of time close to one month. The ship has four main engines Wärtsilä 5850 kW for propulsion, and four auxiliary engines 2760 kW used for electrical consumers. A number of six load conditions were identified depending on the vessel speed. The speed range from 12–14 knots was considered as the design condition, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total electricity consumption on board. These data confirmed the ORC as a feasible and promising technology for the reduction of fuel consumption and CO2 emissions of existing ships.
  •  
4.
  • Ahlgren, Fredrik, 1980-, et al. (författare)
  • Waste Heat Recovery in a Cruise Vessel in the Baltic Sea by Using an Organic Rankine Cycle : A Case Study
  • 2016
  • Ingår i: Journal of engineering for gas turbines and power. - : ASME Press. - 0742-4795 .- 1528-8919. ; 138:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Maritime transportation is a significant contributor to SOx,NOx, and particle matter (PM) emissions, and to a lesser extent, of CO2. Recently, new regulations are being enforced in special geographical areas to limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry toward the improvement of the energy efficiency of ships. Although more sophisticated and complex engine designs can improve significantly of the energy systems on ships, waste heat recovery arises as the most effective technique for the reduction of the energy consump- tion. In this sense, it is estimated that around 50% of the total energy from the fuel con- sumed in a ship is wasted and rejected through liquid and gas streams. The primary heat sources for waste heat recovery are the engine exhaust and coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines (AE) exhaust heat. Experimental data from the engines on the cruise ship M/S Birka Stockholm were logged during a port-to- port cruise from Stockholm to Mariehamn, over a period of 4 weeks. The ship has four main engines (ME) W€artsil€ a 5850kW for propulsion, and four AE 2760kW which areused for electrical generation. Six engine load conditions were identified depending on the ship’s speed. The speed range from 12 to 14 kn was considered as the design condi- tion for the ORC, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene as working fluid would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total elec- tricity consumption on board. These data confirmed the ORC as a feasible and promisingtechnology for the reduction of fuel consumption and CO2 emissions of existing ships.
  •  
5.
  • Ali Motamed, Mohammad, et al. (författare)
  • Part-load thermal efficiency enhancement in gas turbine combined cycles by exhaust gas recirculation
  • 2024
  • Ingår i: Applied Thermal Engineering. - 1359-4311. ; 244
  • Tidskriftsartikel (refereegranskat)abstract
    • Gas turbine power plants are popular for offshore power generation due to high power density and their reliability. However, growing usage of renewable energies put gas turbines in a load following backup operation. These power plants suffer part-load efficiency losses when operating at less than full capacity, resulting in higher carbon dioxide (CO2) emission from natural gas combined cycles or higher consumption of carbon-free fuels in decarbonized gas turbines. In this article, a solution is proposed for enhancement of power plant part-load thermal efficiency based on exhaust gas recirculation in the gas turbine cycle. Recirculating exhaust gas into the gas turbine have been studied by several researchers and engineers due to its benefit for carbon-free combustion and carbon capture mechanisms. The proposed operation strategy is evaluated for single-spool and two-spool gas turbines operating jointly with a steam bottoming cycle harvesting the waste heat for further power production. In the suggested strategy, eliminating the necessity to cool down the recirculated gas resulted in less equipment footprint for the power plant which makes it more favorable for offshore applications. An in-house design and simulation tool is developed for evaluating gas turbines with modern gas recirculating systems and a flexibility in operation with carbon-free fuel mixtures. The enhancement in efficiency boost, emission reduction, and fuel consumption is quantified demonstrating the improvements with the proposed solution.
  •  
6.
  • Anton, Nicholas, et al. (författare)
  • AXIAL TURBINE DESIGN FOR A TWIN-TURBINE HEAVY-DUTY TURBOCHARGER CONCEPT
  • 2018
  • Ingår i: PROCEEDINGS OF THE ASME TURBO EXPO. - : ASME Press. - 9780791851005
  • Konferensbidrag (refereegranskat)abstract
    • In the process of evaluating a parallel twin-turbine pulse-turbocharged concept, the results considering the turbine operation clearly pointed towards an axial type of turbine. The radial turbine design first analyzed was seen to suffer from sub-optimum values of flow coefficient, stage loading and blade speed-ratio. Modifying the radial turbine by both assessing the influence of "trim" and inlet tip diameter all concluded that this type of turbine is limited for the concept. Mainly, the turbine stage was experiencing high values of flow coefficient, requiring a more high flowing type of turbine. Therefore, an axial turbine stage could be feasible as this type of turbine can handle significantly higher flow rates very efficiently. Also, the design spectrum is broader as the shape of the turbine blades is not restricted by a radially fibred geometry as in the radial turbine case. In this paper, a single stage axial turbine design is presented. As most turbocharger concepts for automotive and heavy-duty applications are dominated by radial turbines, the axial turbine is an interesting option to be evaluated for pulse charged concepts. Values of crank-angle-resolved turbine and flow parameters from engine simulations are used as input to the design and subsequent analysis. The data provides a valuable insight into the fluctuating turbine operating conditions and is a necessity for matching a pulse-turbocharged system. Starting on a 1D-basis, the design process is followed through, resulting in a fully defined 3D-geometry. The 3D-design is evaluated both with respect to FEA and CFD as to confirm high performance and durability. Turbine maps were used as input to the engine simulation in order to assess this design with respect to "on-engine" conditions and to engine performance. The axial design shows clear advantages with regards to turbine parameters, efficiency and tip speed levels compared to a reference radial design. Improvement in turbine efficiency enhanced the engine performance significantly. The study concludes that the proposed single stage axial turbine stage design is viable for a pulse-turbocharged six cylinder heavy-duty engine. Taking into account both turbine performance and durability aspects, validation in engine simulations, a highly efficient engine with a practical and realizable turbocharger concept resulted.
  •  
7.
  • Anton, Nicholas (författare)
  • Engine Optimized Turbine Design
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The focus on our environment has never been as great as it is today. The impact of global warming and emissions from combustion processes become increasingly more evident with growing concerns among the world’s inhabitants. The consequences of extreme weather events, rising sea levels, urban air quality, etc. create a desperate need for immediate action. A major contributor to the cause of these effects is the transportation sector, a sector that relies heavily on the internal combustion engine and fossil fuels. The heavy-duty segment of the transportation sector is a major consumer of oil and is responsible for a large proportion of emissions.The global community has agreed on multiple levels to reduce the effect of man-made emissions into the atmosphere. Legislation for future reductions and, ultimately, a totally fossil-free society is on the agenda for many industrialized countries and an increasing number of emerging economies.Improvements of the internal combustion engine will be of importance in order to effectively reduce emissions from the transportation sector both presently and in the future. The primary focus of these improvements is undoubtedly in the field of engine efficiency. The gas exchange system is of major importance in this respect. The inlet and exhaust flows as the cylinder is emptied and filled will significantly influence the pumping work of the engine. At the center of the gas exchange system is the turbocharger. The turbine stage of the turbocharger can utilize the energy in the exhaust flow by expanding the exhaust gases in order to power the compressor stage of the turbocharger.If turbocharger components can operate at high efficiency, it is possible to achieve high engine efficiency and low fuel consumption. Low exhaust pressure during the exhaust stroke combined with high pressure at the induction stroke results in favorable pumping work. For the process to work, a systems-based approach is required as the turbocharger is only one component of the engine and gas exchange system.In this thesis, the implications of turbocharger turbine stage design with regards to exhaust energy utilization have been extensively studied. Emphasis has been placed on the turbine stage in a systems context with regards to engine performance and the influence of exhaust system components.The most commonly used turbine stage in turbochargers, the radial turbine, is associated with inherent limitations in the context of exhaust energy utilization. Primarily, turbine stage design constraints result in low efficiency in the pulsating exhaust flow, which impairs the gas exchange process. Gas stand and numerical evaluation of the common twin scroll radial turbine stage highlighted low efficiency levels at high loadings. For a pulse-turbocharged engine with low exhaust manifold volume, the majority of extracted work by the turbine will occur at high loadings, far from the optimum efficiency point for radial turbines. In order for the relevant conditions to be assessed with regards to turbine operation, the entire exhaust pulse must be considered in detail. Averaged conditions will not capture the variability in energy content of the exhaust pulse important for exhaust energy utilization.Modification of the radial turbine stage design in order to improve performance is very difficult to achieve. Typical re-sizing with modifying tip diameter and trim are not adequate for altering turbine operation into high efficiency regions at the energetic exhaust pulse peak.The axial turbine type is an alternative as a turbocharger turbine stage for a pulse-turbocharged engine. The axial turbine stage design can allow for high utilization of exhaust energy with minimal pressure interference in the gas exchange process; a combination which has been shown to result in engine efficiency improvements compared to state-of-the-art radial turbine stages.
  •  
8.
  • Anton, Nicholas, et al. (författare)
  • Exhaust volume dependency of turbocharger turbine design for a heavy duty otto cycle engine
  • 2017
  • Ingår i: Proceedings of the ASME Turbo Expo. - : ASME Press. - 9780791850800
  • Konferensbidrag (refereegranskat)abstract
    • This study is considering turbocharger turbine performance at "on-engine" conditions with respect to turbine design variables and exhaust manifold volume. The highly unsteady nature of the internal combustion engine will result in a very wide range of turbine operation, far from steady flow conditions. As most turbomachinery design work is conducted at steady state, the influence of the chosen turbine design variables on the crank-angle-resolved turbine performance will be of prime interest. In order to achieve high turbocharger efficiency with the greatest benefits for the engine, the turbine will need high efficiency at the energetic exhaust pressure pulse peak. The starting point for this paper is a target full load power curve for a heavy duty Otto-cycle engine, which will dictate an initial compressor and turbine match. Three radial turbine designs are investigated, differing with respect to efficiency characteristics, using a common compressor stage. The influence of the chosen turbine design variables considering a main contributor to unsteadiness, exhaust manifold volume, is evaluated using 1D engine simulation software. A discussion is held in conjunction with this regarding the efficiency potential of each turbine design and limitations of turbine types.
  •  
9.
  • Anton, Nicholas, et al. (författare)
  • ON THE CHOICE OF TURBINE TYPE FOR A TWIN-TURBINE HEAVY-DUTY TURBOCHARGER CONCEPT
  • 2018
  • Ingår i: PROCEEDINGS OF THE ASME TURBO EXPO. - : AMER SOC MECHANICAL ENGINEERS. ; 8
  • Konferensbidrag (refereegranskat)abstract
    • In this study, a fundamental approach to the choice of turbocharger turbine for a pulse-charged heavy-duty diesel engine is presented. A standard six-cylinder engine build with a production exhaust manifold and a Twin-scroll turbocharger is used as a baseline case. The engine exhaust configuration is redesigned and evaluated in engine simulations for a pulse-charged concept consisting of a parallel twin-turbine layout. This concept will allow for pulse separation with minimized exhaust pulse interference and low exhaust manifold volume. This turbocharger concept is uncommon, as most previous studies have considered two stage systems, various multiple entry turbine stages etc. Even more rare is the fundamental aspect regarding the choice of turbine type as most manufacturers tend to focus on radial turbines, which by far dominate the turbochargers of automotive and heavy-duty applications. By characterizing the turbine operation with regards to turbine parameters for optimum performance found in literature a better understanding of the limitations of turbine types can be achieved. A compact and low volume exhaust manifold design is constructed for the turbocharger concept and the reference radial turbine map is scaled in engine simulations to a pre-set AFR-target at a low engine RPM. By obtaining crank-angle-resolved data from engine simulations, key turbine parameters are studied with regard to the engine exhaust pulse-train. At the energetic exhaust pressure pulse peak, the reference radial turbine is seen to operate with suboptimum values of Blade-Speed-Ratio, Stage Loading and Flow Coefficient. The study concludes that in order to achieve high turbine efficiency for this pulse-charged turbocharger concept, a turbine with efficiency optimum towards low Blade-Speed Ratios, high Stage Loading and high Flow Coefficient is required. An axial turbine of low degree of reaction-design could be viable in this respect.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 69
Typ av publikation
konferensbidrag (49)
tidskriftsartikel (15)
doktorsavhandling (3)
bokkapitel (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (65)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Genrup, Magnus (64)
Thern, Marcus (21)
Grönstedt, Tomas, 19 ... (7)
Anton, Nicholas (7)
Assadi, Mohsen (7)
Deshpande, Srikanth (7)
visa fler...
Ahlgren, Fredrik, 19 ... (5)
Eriksson, Pontus (5)
Fredriksson, Carl (5)
Klingmann, Jens (5)
Larsson, Per-Inge (4)
Fransson, Torsten (3)
Mondejar, Maria E. (3)
Mondejar, Maria (3)
Laumert, Björn (3)
Fridh, Jens (3)
Christiansen Erlands ... (3)
Dahlquist, Adrian (3)
Spelling, James (2)
Mårtensson, Hans (2)
Lejon, Marcus, 1986 (2)
Reinap, Avo (2)
Genrup, Magnus, Prof ... (2)
Topel, Monika, 1988- (2)
Fredriksson Möller, ... (2)
Glodic, Nenad (2)
Xisto, Carlos, 1984 (1)
Jonsson, Isak, 1990 (1)
Sigfrid, Ivan (1)
Ghaffari, Ali (1)
Karlsson, Christer (1)
Spelling, James, 198 ... (1)
Ali Motamed, Mohamma ... (1)
Nord, Lars O. (1)
Orbay, Raik, 1974 (1)
Hultqvist, Anders (1)
Christiansen-Erlands ... (1)
Gugau, Marc, Dr (1)
Fredriksson, C. (1)
Larsson, P. -I (1)
Erlandsson-Christian ... (1)
Arriagada, Jaime (1)
Torisson, Tord (1)
Lundbladh, Anders, 1 ... (1)
Bahrami, Saeed (1)
Guédez, Rafael (1)
Jordal, Kristin (1)
Mann, Alexander (1)
Zhao, Xin, 1986 (1)
Fast, Magnus (1)
visa färre...
Lärosäte
Lunds universitet (57)
Kungliga Tekniska Högskolan (17)
Chalmers tekniska högskola (9)
Linnéuniversitetet (5)
Mälardalens universitet (1)
RISE (1)
Språk
Engelska (68)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Teknik (68)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy