SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Georen SK) "

Sökning: WFRF:(Georen SK)

  • Resultat 1-10 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Arebro, J, et al. (författare)
  • A possible role for neutrophils in allergic rhinitis revealed after cellular subclassification
  • 2017
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7, s. 43568-
  • Tidskriftsartikel (refereegranskat)abstract
    • A re-examination of former concepts is required to meet today’s medical challenges in allergic rhinitis. Previously, neutrophils have been treated as a relatively homogenous cell population found in the nose both when the patient is suffering at the height of the allergic season as well as when the patient report no symptoms. However, new data indicates that neutrophils can be divided into different subsets with diverse roles in inflammation. We showed increased levels of neutrophils in peripheral blood, nasal biopsies and nasal lavage fluid (NAL) from allergic patients during the pollen season compared to healthy controls. A closer examination revealed that the activated subset of neutrophils, CD16high CD62Ldim, outweighed the normal form CD16high CD62Lhigh in nasal tissue among these patients. This skewed distribution was not seen in controls. The normal subset prevailed in peripheral blood from patients as well as controls, whereas CD16high CD62Ldim and CD16dim CD62Ldim subsets, the latter considered “end state” neutrophils before apoptosis, were elevated in NAL. Functional in vitro experiments revealed that activated neutrophils exhibit a T cell priming capacity and an ability to enhance eosinophil migration. Activated neutrophils may thus contribute to allergic inflammation seen in allergic rhinitis by priming T cells and attracting eosinophils.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Cardenas, EI, et al. (författare)
  • Increased IL-26 associates with markers of hyperinflammation and tissue damage in patients with acute COVID-19
  • 2022
  • Ingår i: Frontiers in immunology. - : Frontiers Media SA. - 1664-3224. ; 13, s. 1016991-
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin-26 (IL-26) is released by several immune and structural cells following stimulation of toll-like receptors (TLRs), whereupon it can directly inhibit viral replication and enhance neutrophil chemotaxis. Given these unique properties, IL-26 has emerged as an intriguing mediator of host defense in the lungs. However, the role of IL-26 in COVID-19 has not been thoroughly investigated. Here, we characterized the involvement of IL-26 in the hyperinflammation and tissue damage that occurs in patients with acute COVID-19. We found that IL-26 is markedly increased in blood samples from these patients, and that the concentration of IL-26 correlates with those of the neutrophil-mobilizing cytokines IL-8 and TNFα, respectively. Moreover, the increase in blood IL-26 correlates with enhanced surface expression of the “don’t eat me” signal CD47 on blood neutrophils isolated from patients with acute COVID-19. Finally, we found that the blood concentration of IL-26 correlates with that of increased lactate dehydrogenase, an established marker of tissue damage, and decreased mean corpuscular hemoglobin (MCH), a previously verified hematological aberration in COVID-19, both of which are associated with severe disease. Thus, our findings indicate that increased systemic IL-26 associates with markers of hyperinflammation and tissue damage in patients with acute COVID-19, thereby forwarding the kinocidin IL-26 as a potential target for diagnosis, monitoring, and therapy in this deadly disease.
  •  
7.
  • Ekstedt, S, et al. (författare)
  • A prolonged innate systemic immune response in COVID-19
  • 2022
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1, s. 9915-
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the introduction of vaccines, COVID-19 still affects millions of people worldwide. A better understanding of pathophysiology and the discovery of novel therapies are needed. One of the cells of interest in COVID-19 is the neutrophil. This cell type is being recruited to a site of inflammation as one of the first immune cells. In this project, we investigated a variety of neutrophils phenotypes during COVID-19 by measuring the expression of markers for migration, maturity, activation, gelatinase granules and secondary granules using flow cytometry. We show that neutrophils during COVID-19 exhibit altered phenotypes compared to healthy individuals. The activation level including NETs production and maturity of neutrophils seem to last longer during COVID-19 than expected for innate immunity. Neutrophils as one of the drivers of severe cases of COVID-19 are considered as potential treatment targets. However, for a successful implementation of treatment, there is a need for a better understanding of neutrophil functions and phenotypes in COVID-19. Our study answers some of those questions.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy