SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gerber Timm) "

Sökning: WFRF:(Gerber Timm)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gerber, Timm, et al. (författare)
  • CO-Induced Smoluchowski Ripening of Pt Cluster Arrays on the Graphene/Ir(111) Moire
  • 2013
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 7:3, s. 2020-2031
  • Tidskriftsartikel (refereegranskat)abstract
    • Regular Pt cluster arrays grown on the moire template formed by graphene on Ir(111) were tested for their stability with respect to CO gas exposure. Cluster stability and adsorption-Induced processes were analyzed as a function of cluster size, with In situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. Small clusters containing fewer than 10 atoms were unstable upon CO adsorption. They sintered through Smoluchowski ripening-cluster diffusion and coalescence rather than the frequently reported Ostwald ripening mediated by metal-adsorbate complexes. Larger dusters remained immobile upon CO adsorption but became more three-dimensional. Careful analysis of the experimental data complemented by ab initio density functional theory calculations provides insight Into the origin of the CO-induced Pt cluster ripening and shape transformations.
  •  
2.
  • Grånäs, Elin, et al. (författare)
  • CO Intercalation of Graphene on Ir(111) in the Millibar Regime
  • 2013
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:32, s. 16438-16447
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we show that it is possible to intercalate CO under graphene grown on Ir(111) already at room temperature when CO pressures in the millibar regime are used. From the interplay of X-ray photoelectron spectroscopy and scanning tunneling microscopy we conclude that the intercalated CO adsorption structure is similar to the (3 root 3 X 3 root 3)R30 degrees) adsorption structure that is formed on Ir(111) upon exposure to similar to 1 mbar of CO. Further, density functional theory calculations reveal that the structural and electronic properties of CO-intercalated graphene are similar to p-doped freestanding graphene. Finally we characterize nonintercalated stripes and islands that we always observe in the CO-intercalated graphene. We observe these nonintercalated areas predominately in HCP and FCC areas near step edges and suggest that stress release in graphene is the driving force for their formation, while the weak chemical bonds in HCP and FCC areas are the reason for their area selectivity.
  •  
3.
  • Grånäs, Elin, et al. (författare)
  • Hydrogen intercalation under graphene on Ir(111)
  • 2016
  • Ingår i: Surface Science. - : Elsevier BV. - 0039-6028. ; 651, s. 57-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Using high resolution X-ray photoelectron spectroscopy and scanning tunneling microscopy we study the intercalation of hydrogen under graphene/Ir(111). The hydrogen intercalated graphene is characterized by a component in C 1s that is shifted −0.10 to −0.18 eV with respect to pristine graphene and a component in Ir 4f at 60.54 eV. The position of this Ir 4f component is identical to that of the Ir(111) surface layer with hydrogen atoms adsorbed, indicating that the atomic hydrogen adsorption site on bare Ir(111) and beneath graphene is the same. Based on co-existence of fully- and non-intercalated graphene, and the inability to intercalate a closed graphene film covering the entire Ir(111) surface, we conclude that hydrogen dissociatively adsorbs at bare Ir(111) patches, and subsequently diffuses rapidly under graphene. A likely entry point for the intercalating hydrogen atoms is identified to be where graphene crosses an underlying Ir(111) step.
  •  
4.
  • Grånäs, Elin, et al. (författare)
  • Oxygen Intercalation under Graphene on Ir(111): Energetics, Kinetics, and the Role of Graphene Edges.
  • 2012
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851.
  • Tidskriftsartikel (refereegranskat)abstract
    • Using X-ray photoemission spectroscopy (XPS) and scanning tunneling microscopy (STM) we resolve the temperature-, time-, and flake size-dependent intercalation phases of oxygen underneath graphene on Ir(111) formed upon exposure to molecular oxygen. Through the applied pressure of molecular oxygen the atomic oxygen created on the bare Ir terraces is driven underneath graphene flakes. The importance of substrate steps and of the unbinding of graphene flake edges from the substrate for the intercalation is identified. With the use of CO titration to selectively remove oxygen from the bare Ir terraces the energetics of intercalation is uncovered. Cluster decoration techniques are used as an efficient tool to visualize intercalation processes in real space.
  •  
5.
  • Grånäs, Elin, et al. (författare)
  • Water Chemistry beneath Graphene : Condensation of a Dense OH-H2O Phase under Graphene
  • 2022
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 126:9, s. 4347-4354
  • Tidskriftsartikel (refereegranskat)abstract
    • Room temperature oxygen hydrogenation below graphene flakes supported by Ir(111) is investigated through a combination of X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory calculations using an evolutionary search algorithm. We demonstrate how the graphene cover and its doping level can be used to trap and characterize dense mixed O-OH-H2O phases that otherwise would not exist. Our study of these graphene-stabilized phases and their response to oxygen or hydrogen exposure reveals that additional oxygen can be dissolved into them at room temperature creating mixed O-OH-H2O phases with an increased areal coverage underneath graphene. In contrast, additional hydrogen exposure converts the mixed O-OH-H2O phases back to pure OH-H2O with a reduced areal coverage underneath graphene.
  •  
6.
  • Knudsen, Jan, et al. (författare)
  • Clusters binding to the graphene moire on Ir(111): X-ray photoemission compared to density functional calculations
  • 2012
  • Ingår i: Physical Review B (Condensed Matter and Materials Physics). - 1098-0121. ; 85:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Our understanding of metal-atom cluster adsorption on graphene on Ir(111) is based on elementary chemical ideas, rehybridization, and buckling, supported by density functional theory (DFT) calculations. We tested the DFT picture by comparing calculated core level spectra to x-ray photoemission spectroscopy (XPS) measurements. For pristine graphene, which forms a gently undulating moire on Ir(111), DFT predicts a 140 meV modulation of C 1s core level shifts (CLS), consistent with the measured spectrum. With Pt clusters adsorbed, measured Pt 4f CLS of the adsorbed clusters also support the calculations. The modulation of the C 1s spectrum is strengthened with clusters adsorbed, and C-atom ionization potentials under and in the vicinity of the Pt clusters are shifted enough to be experimentally distinguished as a broad shoulder of positive C 1s CLSs. Furthermore, DFT calculations imply that sp(2) to sp(3) graphene rehybridization of C atoms below the Pt cluster induces a 1.1 eV CLS splitting between Pt- and Ir-bonded C atoms; this prediction is also consistent with the XPS data.
  •  
7.
  • Schroeder, Ulrike A., et al. (författare)
  • Etching of graphene on Ir(111) with molecular oxygen
  • 2016
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223. ; 96, s. 320-331
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms for oxygen etching of graphene on Ir(111) are uncovered through a systematic variation of the graphene morphology - ranging from an impermeable graphene layer to graphene nanoflakes - and the application of complementary experimental methods, including scanning tunneling microscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption. Associated with a strong variation in the onset temperature for etching, we find a fundamental difference in the onset of etching for an impermeable layer and for graphene flakes. For the impermeable graphene layer etching is shown to nucleate at graphene pentagon heptagon point defects through molecules impinging from the gas phase. For graphene flakes the nucleation problem is absent due to the existence of edges in contact with the metallic substrate. The substrate enables dissociative chemisorption of oxygen, which can then diffuse as atomic oxygen to the graphene edge. Our results show that intercalation of oxygen is neither a necessary condition nor of specific relevance for etching. Based on our analysis, a quantitative estimate for the activation energy and attempt frequency of the elementary etch process in flake etching on Ir(111) is provided. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
8.
  • Schröder, Ulrike A, et al. (författare)
  • Core level shifts of intercalated graphene
  • 2017
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Through intercalation of metals and gases the Dirac cone of graphene on Ir(111) can be shifted with respect to the Fermi level without becoming destroyed by strong hybridization. Here, we use x-ray photoelectron spectroscopy to measure the C 1s core level shift (CLS) of graphene in contact with a number of structurally well-defined intercalation layers (O, H, Eu, and Cs). By analysis of our own and additional literature data for decoupled graphene, the C 1s CLS is found to be a non-monotonic function of the doping level. For small doping levels the shifts are well described by a rigid band model. However, at larger doping levels, a second effect comes into play which is proportional to the transferred charge and counteracts the rigid band shift. Moreover, not only the position, but also the C 1s peak shape displays a unique evolution as a function of doping level. Our conclusions are supported by intercalation experiments with Li, with which, due to the absence of phase separation, the doping level of graphene can be continuously tuned.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy