SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gerbig Christoph) "

Sökning: WFRF:(Gerbig Christoph)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berchet, Antoine, et al. (författare)
  • The Community Inversion Framework v1.0 : A unified system for atmospheric inversion studies
  • 2021
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 14:8, s. 5331-5354
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric inversion approaches are expected to play a critical role in future observation-based monitoring systems for surface fluxes of greenhouse gases (GHGs), pollutants and other trace gases. In the past decade, the research community has developed various inversion software, mainly using variational or ensemble Bayesian optimization methods, with various assumptions on uncertainty structures and prior information and with various atmospheric chemistry-Transport models. Each of them can assimilate some or all of the available observation streams for its domain area of interest: flask samples, in situ measurements or satellite observations. Although referenced in peer-reviewed publications and usually accessible across the research community, most systems are not at the level of transparency, flexibility and accessibility needed to provide the scientific community and policy makers with a comprehensive and robust view of the uncertainties associated with the inverse estimation of GHG and reactive species fluxes. Furthermore, their development, usually carried out by individual research institutes, may in the future not keep pace with the increasing scientific needs and technical possibilities. We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is primarily a programming protocol to allow various inversion bricks to be exchanged among researchers. In practice, the ensemble of bricks makes a flexible, transparent and open-source Python-based tool to estimate the fluxes of various GHGs and reactive species both at the global and regional scales. It will allow for running different atmospheric transport models, different observation streams and different data assimilation approaches. This adaptability will allow for a comprehensive assessment of uncertainty in a fully consistent framework. We present here the main structure and functionalities of the system, and we demonstrate how it operates in a simple academic case.
  •  
2.
  • Bergamaschi, Peter, et al. (författare)
  • Inverse modelling of European CH4 emissions during 2006–2012 using different inverse models and reassessed atmospheric observations
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 18:2, s. 901-920
  • Tidskriftsartikel (refereegranskat)abstract
    • We present inverse modelling (top down) estimates of European methane (CH4) emissions for 2006–2012 based on a new quality-controlled and harmonised in situ data set from 18 European atmospheric monitoring stations. We applied an ensemble of seven inverse models and performed four inversion experiments, investigating the impact of different sets of stations and the use of a priori information on emissions. The inverse models infer total CH4 emissions of 26.8 (20.2–29.7) Tg CH4 yr−1 (mean, 10th and 90th percentiles from all inversions) for the EU-28 for 2006–2012 from the four inversion experiments. For comparison, total anthropogenic CH4 emissions reported to UNFCCC (bottom up, based on statistical data and emissions factors) amount to only 21.3 Tg CH4 yr−1 (2006) to 18.8 Tg CH4 yr−1 (2012). A potential explanation for the higher range of top-down estimates compared to bottom-up inventories could be the contribution from natural sources, such as peatlands, wetlands, and wet soils. Based on seven different wetland inventories from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP), total wetland emissions of 4.3 (2.3–8.2) Tg CH4 yr−1 from the EU-28 are estimated. The hypothesis of significant natural emissions is supported by the finding that several inverse models yield significant seasonal cycles of derived CH4 emissions with maxima in summer, while anthropogenic CH4 emissions are assumed to have much lower seasonal variability. Taking into account the wetland emissions from the WETCHIMP ensemble, the top-down estimates are broadly consistent with the sum of anthropogenic and natural bottom-up inventories. However, the contribution of natural sources and their regional distribution remain rather uncertain. Furthermore, we investigate potential biases in the inverse models by comparison with regular aircraft profiles at four European sites and with vertical profiles obtained during the Infrastructure for Measurement of the European Carbon Cycle (IMECC) aircraft campaign. We present a novel approach to estimate the biases in the derived emissions, based on the comparison of simulated and measured enhancements of CH4 compared to the background, integrated over the entire boundary layer and over the lower troposphere. The estimated average regional biases range between −40 and 20 % at the aircraft profile sites in France, Hungary and Poland.
  •  
3.
  • McGrath, Matthew J., et al. (författare)
  • The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom : 1990-2020
  • 2023
  • Ingår i: Earth System Science Data. - 1866-3508. ; 15:10, s. 4295-4370
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantification of land surface-atmosphere fluxes of carbon dioxide (CO2) and their trends and uncertainties is essential for monitoring progress of the EU27+UK bloc as it strives to meet ambitious targets determined by both international agreements and internal regulation. This study provides a consolidated synthesis of fossil sources (CO2 fossil) and natural (including formally managed ecosystems) sources and sinks over land (CO2 land) using bottom-up (BU) and top-down (TD) approaches for the European Union and United Kingdom (EU27+UK), updating earlier syntheses (Petrescu et al., 2020, 2021). Given the wide scope of the work and the variety of approaches involved, this study aims to answer essential questions identified in the previous syntheses and understand the differences between datasets, particularly for poorly characterized fluxes from managed and unmanaged ecosystems. The work integrates updated emission inventory data, process-based model results, data-driven categorical model results, and inverse modeling estimates, extending the previous period 1990-2018 to the year 2020 to the extent possible. BU and TD products are compared with the European national greenhouse gas inventory (NGHGI) reported by parties including the year 2019 under the United Nations Framework Convention on Climate Change (UNFCCC). The uncertainties of the EU27+UK NGHGI were evaluated using the standard deviation reported by the EU member states following the guidelines of the Intergovernmental Panel on Climate Change (IPCC) and harmonized by gap-filling procedures. Variation in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), originate from within-model uncertainty related to parameterization as well as structural differences between models. By comparing the NGHGI with other approaches, key sources of differences between estimates arise primarily in activities. System boundaries and emission categories create differences in CO2 fossil datasets, while different land use definitions for reporting emissions from land use, land use change, and forestry (LULUCF) activities result in differences for CO2 land. The latter has important consequences for atmospheric inversions, leading to inversions reporting stronger sinks in vegetation and soils than are reported by the NGHGI. For CO2 fossil emissions, after harmonizing estimates based on common activities and selecting the most recent year available for all datasets, the UNFCCC NGHGI for the EU27+UK accounts for 926g±g13gTggCgyr-1, while eight other BU sources report a mean value of 948 [937,961]gTggCgyr-1 (25th, 75th percentiles). The sole top-down inversion of fossil emissions currently available accounts for 875gTggC in this same year, a value outside the uncertainty of both the NGHGI and bottom-up ensemble estimates and for which uncertainty estimates are not currently available. For the net CO2 land fluxes, during the most recent 5-year period including the NGHGI estimates, the NGHGI accounted for -91g±g32gTggCgyr-1, while six other BU approaches reported a mean sink of -62 [-117,-49]gTggCgyr-1, and a 15-member ensemble of dynamic global vegetation models (DGVMs) reported -69 [-152,-5]gTggCgyr-1. The 5-year mean of three TD regional ensembles combined with one non-ensemble inversion of -73gTggCgyr-1 has a slightly smaller spread (0th-100th percentiles of [-135,+45]gTggCgyr-1), and it was calculated after removing net land-atmosphere CO2 fluxes caused by lateral transport of carbon (crop trade, wood trade, river transport, and net uptake from inland water bodies), resulting in increased agreement with the NGHGI and bottom-up approaches. Results at the category level (Forest Land, Cropland, Grassland) generally show good agreement between the NGHGI and category-specific models, but results for DGVMs are mixed. Overall, for both CO2 fossil and net CO2 land fluxes, we find that current independent approaches are consistent with the NGHGI at the scale of the EU27+UK. We conclude that CO2 emissions from fossil sources have decreased over the past 30 years in the EU27+UK, while land fluxes are relatively stable: positive or negative trends larger (smaller) than 0.07 (-0.61)gTggCgyr-2 can be ruled out for the NGHGI. In addition, a gap on the order of 1000gTggCgyr-1 between CO2 fossil emissions and net CO2 uptake by the land exists regardless of the type of approach (NGHGI, TD, BU), falling well outside all available estimates of uncertainties. However, uncertainties in top-down approaches to estimate CO2 fossil emissions remain uncharacterized and are likely substantial, in addition to known uncertainties in top-down estimates of the land fluxes. The data used to plot the figures are available at 10.5281/zenodo.8148461 (McGrath et al., 2023).
  •  
4.
  • Monteil, Guillaume, et al. (författare)
  • The regional European atmospheric transport inversion comparison, EUROCOM : First results on European-wide terrestrial carbon fluxes for the period 2006-2015
  • 2020
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:20, s. 12063-12091
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric inversions have been used for the past two decades to derive large-scale constraints on the sources and sinks of CO2 into the atmosphere. The development of dense in situ surface observation networks, such as ICOS in Europe, enables in theory inversions at a resolution close to the country scale in Europe. This has led to the development of many regional inversion systems capable of assimilating these high-resolution data, in Europe and elsewhere. The EUROCOM (European atmospheric transport inversion comparison) project is a collaboration between seven European research institutes, which aims at producing a collective assessment of the net carbon flux between the terrestrial ecosystems and the atmosphere in Europe for the period 2006 2015. It aims in particular at investigating the capacity of the inversions to deliver consistent flux estimates from the country scale up to the continental scale. The project participants were provided with a common database of in situ-observed CO2 concentrations (including the observation sites that are now part of the ICOS network) and were tasked with providing their best estimate of the net terrestrial carbon flux for that period, and for a large domain covering the entire European Union. The inversion systems differ by the transport model, the inversion approach, and the choice of observation and prior constraints, enabling us to widely explore the space of uncertainties. This paper describes the intercomparison protocol and the participating systems, and it presents the first results from a reference set of inversions, at the continental scale and in four large regions. At the continental scale, the regional inversions support the assumption that European ecosystems are a relatively small sink (-0:21 ± 0:2 Pg C yr-1). We find that the convergence of the regional inversions at this scale is not better than that obtained in state-of-the-art global inversions. However, more robust results are obtained for subregions within Europe, and in these areas with dense observational coverage, the objective of delivering robust countryscale flux estimates appears achievable in the near future.
  •  
5.
  • Munassar, Saqr, et al. (författare)
  • Why do inverse models disagree? A case study with two European CO2 inversions
  • 2023
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 23:4, s. 2813-2828
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an analysis of atmospheric transport impact on estimating CO2 fluxes using two atmospheric inversion systems (CarboScope-Regional (CSR) and Lund University Modular Inversion Algorithm (LUMIA)) over Europe in 2018. The main focus of this study is to quantify the dominant drivers of spread amid CO2 estimates derived from atmospheric tracer inversions. The Lagrangian transport models STILT (Stochastic Time-Inverted Lagrangian Transport) and FLEXPART (FLEXible PARTicle) were used to assess the impact of mesoscale transport. The impact of lateral boundary conditions for CO2 was assessed by using two different estimates from the global inversion systems CarboScope (TM3) and TM5-4DVAR. CO2 estimates calculated with an ensemble of eight inversions differing in the regional and global transport models, as well as the inversion systems, show a relatively large spread for the annual fluxes, ranging between -0.72 and 0.20gPgCgyr-1, which is larger than the a priori uncertainty of 0.47gPgCgyr-1. The discrepancies in annual budget are primarily caused by differences in the mesoscale transport model (0.51gPgCgyr-1), in comparison with 0.23 and 0.10gPgCgyr-1 that resulted from the far-field contributions and the inversion systems, respectively. Additionally, varying the mesoscale transport caused large discrepancies in spatial and temporal patterns, while changing the lateral boundary conditions led to more homogeneous spatial and temporal impact. We further investigated the origin of the discrepancies between transport models. The meteorological forcing parameters (forecasts versus reanalysis obtained from ECMWF data products) used to drive the transport models are responsible for a small part of the differences in CO2 estimates, but the largest impact seems to come from the transport model schemes. Although a good convergence in the differences between the inversion systems was achieved by applying a strict protocol of using identical prior fluxes and atmospheric datasets, there was a non-negligible impact arising from applying a different inversion system. Specifically, the choice of prior error structure accounted for a large part of system-to-system differences.
  •  
6.
  • Petrescu, Ana Maria Roxana, et al. (författare)
  • The consolidated European synthesis of CO2emissions and removals for the European Union and United Kingdom : 1990-2018
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 13:5, s. 2363-2406
  • Forskningsöversikt (refereegranskat)abstract
    • Reliable quantification of the sources and sinks of atmospheric carbon dioxide (CO2), including that of their trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Kyoto Protocol and the Paris Agreement. This study provides a consolidated synthesis of estimates for all anthropogenic and natural sources and sinks of CO2 for the European Union and UK (EU27 + UK), derived from a combination of state-of-the-art bottom-up (BU) and top-down (TD) data sources and models. Given the wide scope of the work and the variety of datasets involved, this study focuses on identifying essential questions which need to be answered to properly understand the differences between various datasets, in particular with regards to the less-well-characterized fluxes from managed ecosystems. The work integrates recent emission inventory data, process-based ecosystem model results, data-driven sector model results and inverse modeling estimates over the period 1990-2018. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported under the UNFCCC in 2019, aiming to assess and understand the differences between approaches. For the uncertainties in NGHGIs, we used the standard deviation obtained by varying parameters of inventory calculations, reported by the member states following the IPCC Guidelines. Variation in estimates produced with other methods, like atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arises from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. In comparing NGHGIs with other approaches, a key source of uncertainty is that related to different system boundaries and emission categories (CO2 fossil) and the use of different land use definitions for reporting emissions from land use, land use change and forestry (LULUCF) activities (CO2 land). At the EU27 + UK level, the NGHGI (2019) fossil CO2 emissions (including cement production) account for 2624 Tg CO2 in 2014 while all the other seven bottom-up sources are consistent with the NGHGIs and report a mean of 2588 (± 463 Tg CO2). The inversion reports 2700 Tg CO2 (± 480 Tg CO2), which is well in line with the national inventories. Over 2011-2015, the CO2 land sources and sinks from NGHGI estimates report-90 Tg C yr-1 ± 30 Tg C yr-1 while all other BU approaches report a mean sink of-98 Tg C yr-1 (± 362 Tg of C from dynamic global vegetation models only). For the TD model ensemble results, we observe a much larger spread for regional inversions (i.e., mean of 253 Tg C yr-1 ± 400 Tg C yr-1). This concludes that (a) current independent approaches are consistent with NGHGIs and (b) their uncertainty is too large to allow a verification because of model differences and probably also because of the definition of "CO2 flux"obtained from different approaches. The referenced datasets related to figures are visualized.
  •  
7.
  • Pieber, Simone M., et al. (författare)
  • Analysis of regional CO2contributions at the high Alpine observatory Jungfraujoch by means of atmospheric transport simulations and δ13C
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:16, s. 10721-10749
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we investigated the regional contributions of carbon dioxide (CO2) at the location of the high Alpine observatory Jungfraujoch (JFJ, Switzerland, 3580ĝ€¯mĝ€¯a.s.l.). To this purpose, we combined receptor-oriented atmospheric transport simulations for CO2 concentration in the period 2009-2017 with stable carbon isotope (δ13C-CO2) information. We applied two Lagrangian particle dispersion models driven by output from two different numerical weather prediction systems (FLEXPART-COSMO and STILT-ECMWF) in order to simulate CO2 concentration at JFJ based on regional CO2 fluxes, to estimate atmospheric δ13C-CO2, and to obtain model-based estimates of the mixed source signatures (δ13Cm). Anthropogenic fluxes were taken from a fuel-type-specific version of the EDGAR v4.3 inventory, while ecosystem fluxes were based on the Vegetation Photosynthesis and Respiration Model (VPRM). The simulations of CO2, δ13C-CO2, and δ13Cm were then compared to observations performed by quantum cascade laser absorption spectroscopy. The models captured around 40ĝ€¯% of the regional CO2 variability above or below the large-scale background and up to 35ĝ€¯% of the regional variability in δ13C-CO2. This is according to expectations considering the complex Alpine topography, the low intensity of regional signals at JFJ, and the challenging measurements. Best agreement between simulations and observations in terms of short-term variability and intensity of the signals for CO2 and δ13C-CO2 was found between late autumn and early spring. The agreement was inferior in the early autumn periods and during summer. This may be associated with the atmospheric transport representation in the models. In addition, the net ecosystem exchange fluxes are a possible source of error, either through inaccuracies in their representation in VPRM for the (Alpine) vegetation or through a day (uptake) vs. night (respiration) transport discrimination to JFJ. Furthermore, the simulations suggest that JFJ is subject to relatively small regional anthropogenic contributions due to its remote location (elevated and far from major anthropogenic sources) and the limited planetary boundary layer influence during winter. Instead, the station is primarily exposed to summertime ecosystem CO2 contributions, which are dominated by rather nearby sources (within 100ĝ€¯km). Even during winter, simulated gross ecosystem respiration accounted for approximately 50ĝ€¯% of all contributions to the CO2 concentrations above the large-scale background. The model-based monthly mean δ13Cm ranged from -ĝ€¯22ĝ€¯‰ in winter to -ĝ€¯28ĝ€¯‰ in summer and reached the most depleted values of -ĝ€¯35ĝ€¯‰ at higher fractions of natural gas combustion, as well as the most enriched values of -ĝ€¯17ĝ€¯‰ to -ĝ€¯12ĝ€¯‰ when impacted by cement production emissions. Observation-based δ13Cm values were derived independently from the simulations by a moving Keeling-plot approach. While model-based estimates spread in a narrow range, observation-based δ13Cm values exhibited a larger scatter and were limited to a smaller number of data points due to the stringent analysis prerequisites.
  •  
8.
  • Sathyanadh, Anusha, et al. (författare)
  • Reconciling the Carbon Balance of Northern Sweden Through Integration of Observations and Modelling
  • 2021
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-897X .- 2169-8996. ; 126:23
  • Tidskriftsartikel (refereegranskat)abstract
    • The boreal biome plays an important role in the global carbon cycle. However, current estimates of its sink-source strength and responses to changes in climate are primarily derived from models and thus remain uncertain. A major challenge is the validation of these models at a regional scale since empirical flux estimates are typically confined to ecosystem or continental scales. The Integrated Carbon Observation System (ICOS)-Svartberget atmospheric station (SVB) provides observations including tall tower eddy covariance (EC) and atmospheric concentration measurements that can contribute to such validation in Northern Sweden. Thus, the overall aim of this study was to quantify the carbon balance in Northern Sweden region by integrating land-atmosphere fluxes and atmospheric carbon dioxide (CO2) concentrations. There were three specific objectives. First, to compare flux estimates from four models (VPRM, LPJ-GUESS, ORCHIDEE, and SiBCASA) to tall tower EC measurements at SVB during the years 2016–2018. Second to assess the fluxes' impact on atmospheric CO2 concentrations using a regional transport model. Third, to assess the impact of the drought in 2018. The comparison of estimated concentrations with ICOS observations helped the evaluation of the models' regional scale performance. Both the simulations and observations indicate there were similar reductions in the net CO2 uptake during drought. All the models (except for SiBCASA) and observations indicated the region was a net carbon sink during the 3-year study period. Our study highlights a need to improve vegetation models through comparisons with empirical data and demonstrate the ICOS network's potential utility for constraining CO2 fluxes in the region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy