SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gergely László Árpád) "

Sökning: WFRF:(Gergely László Árpád)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arun, K. G., et al. (författare)
  • New horizons for fundamental physics with LISA
  • 2022
  • Ingår i: Living Reviews in Relativity. - : Springer Science and Business Media LLC. - 1433-8351 .- 2367-3613. ; 25:1
  • Forskningsöversikt (refereegranskat)abstract
    • The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas.
  •  
2.
  • Bense, Laszlo, et al. (författare)
  • Right main bronchus perforation detected by 3D-image
  • 2011
  • Ingår i: BMJ Case Reports. - : BMJ. - 1757-790X.
  • Tidskriftsartikel (refereegranskat)abstract
    • A male metal worker, who has never smoked, contracted debilitating dyspnoea in 2003 which then deteriorated until 2007. Spirometry and chest x-rays provided no diagnosis. A 3D-image of the airways was reconstructed from a high-resolution CT (HRCT) in 2007, showing peribronchial air on the right side, mostly along the presegmental airways. After digital subtraction of the image of the peribronchial air, a hole on the cranial side of the right main bronchus was detected. The perforation could be identified at the re-examination of HRCTs in 2007 and 2009, but not in 2010 when it had possibly healed. The occupational exposure of the patient to evaporating chemicals might have contributed to the perforation and hampered its healing. A 3D HRCT reconstruction should be considered to detect bronchial anomalies, including wall-perforation, when unexplained dyspnoea or other chest symptoms call for extended investigation.
  •  
3.
  • Eriksson, Daniel, 1977- (författare)
  • Perturbative Methods in General Relativity
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Einstein's theory of general relativity is a cornerstone in the process of gaining increased understanding about problems of gravitational nature. It can be applied to problems on the huge length scales of cosmology and as far as we know it does not break down before the Planck scale is approached. Irrespective of scale, a perturbative approach is often a very useful way to reduce the Einstein system to manageable complexity and size.The projects included in this thesis can be divided into three subcategories. In the first category the keyword is photon-photon scattering. General relativity predicts that scattering can take place on a flat background due to the curvature of space-time caused by the photons themselves. The coupling equations and cross-section are found and a comparison with the corresponding quantum field theoretical results is done to leading order. Moreover, photon-photon scattering due to exchange of virtual electron-positron pairs is considered as an effective field theory in terms of the Heisenberg-Euler Lagrangian resulting in a possible setup for experimental detection of this phenomenon using microwave cavities. The second category of projects is related to cosmology. Here linear perturbations around a flat FRW universe with a cosmological constant are considered and the corresponding temperature variations of the cosmic microwave background radiation are found. Furthermore, cosmological models of Bianchi type V are investigated using a method based on the invariant scheme for classification of metrics by Karlhede. The final category is slowly rotating stars. Here the problem of matching a perfect fluid interior of Petrov type D to an exterior axisymmetric vacuum solution is treated perturbatively up to second order in the rotational parameter.
  •  
4.
  • Gergely, Laszlo Arpad, et al. (författare)
  • Geometro-thermodynamics of tidal charged black holes
  • 2011
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 71:3, s. 1569-
  • Tidskriftsartikel (refereegranskat)abstract
    • Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the five-dimensional Weyl curvature. For q > 0 they are formally identical to the Reissner-Nordstrom black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner-Nordstrom black hole. As a similarity, we show that (for q > 0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincare stability analysis show no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q < 0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy