SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gessler Arthur) "

Sökning: WFRF:(Gessler Arthur)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baeten, Lander, et al. (författare)
  • Identifying the tree species compositions that maximize ecosystem functioning in European forests
  • 2019
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 56:3, s. 733-744
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Forest ecosystem functioning generally benefits from higher tree species richness, but variation within richness levels is typically large. This is mostly due to the contrasting performances of communities with different compositions. Evidence-based understanding of composition effects on forest productivity, as well as on multiple other functions will enable forest managers to focus on the selection of species that maximize functioning, rather than on diversity per se.2. We used a dataset of 30 ecosystem functions measured in stands with different species richness and composition in six European forest types. First, we quantified whether the compositions that maximize annual above-ground wood production (productivity) generally also fulfil the multiple other ecosystem functions (multifunctionality). Then, we quantified the species identity effects and strength of interspecific interactions to identify the "best" and "worst" species composition for multifunctionality. Finally, we evaluated the real-world frequency of occurrence of best and worst mixtures, using harmonized data from multiple national forest inventories.3. The most productive tree species combinations also tended to express relatively high multifunctionality, although we found a relatively wide range of compositions with high- or low-average multifunctionality for the same level of productivity. Monocultures were distributed among the highest as well as the lowest performing compositions. The variation in functioning between compositions was generally driven by differences in the performance of the component species and, to a lesser extent, by particular interspecific interactions. Finally, we found that the most frequent species compositions in inventory data were monospecific stands and that the most common compositions showed below-average multifunctionality and productivity.4. Synthesis and applications. Species identity and composition effects are essential to the development of high-performing production systems, for instance in forestry and agriculture. They therefore deserve great attention in the analysis and design of functional biodiversity studies if the aim is to inform ecosystem management. A management focus on tree productivity does not necessarily trade-off against other ecosystem functions; high productivity and multifunctionality can be combined with an informed selection of tree species and species combinations.
  •  
2.
  • Etzold, Sophia, et al. (författare)
  • Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests
  • 2020
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127 .- 1872-7042. ; 458
  • Tidskriftsartikel (refereegranskat)abstract
    • Changing environmental conditions may substantially interact with site quality and forest stand characteristics, and impact forest growth and carbon sequestration. Understanding the impact of the various drivers of forest growth is therefore critical to predict how forest ecosystems can respond to climate change. We conducted a continental-scale analysis of recent (1995–2010) forest volume increment data (ΔVol, m3 ha−1 yr−1), obtained from ca. 100,000 coniferous and broadleaved trees in 442 even-aged, single-species stands across 23 European countries. We used multivariate statistical approaches, such as mixed effects models and structural equation modelling to investigate how European forest growth respond to changes in 11 predictors, including stand characteristics, climate conditions, air and site quality, as well as their interactions. We found that, despite the large environmental gradients encompassed by the forests examined, stand density and age were key drivers of forest growth. We further detected a positive, in some cases non-linear effect of N deposition, most pronounced for beech forests, with a tipping point at ca. 30 kg N ha−1 yr−1. With the exception of a consistent temperature signal on Norway spruce, climate-related predictors and ground-level ozone showed much less generalized relationships with ΔVol. Our results show that, together with the driving forces exerted by stand density and age, N deposition is at least as important as climate to modulate forest growth at continental scale in Europe, with a potential negative effect at sites with high N deposition.
  •  
3.
  • Etzold, Sophia, et al. (författare)
  • Number of growth days and not length of the growth period determines radial stem growth of temperate trees
  • 2022
  • Ingår i: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 25:2, s. 427-439
  • Tidskriftsartikel (refereegranskat)abstract
    • Radial stem growth dynamics at seasonal resolution are essential to understand how forests respond to climate change. We studied daily radial growth of 160 individuals of seven temperate tree species at 47 sites across Switzerland over 8 years. Growth of all species peaked in the early part of the growth season and commenced shortly before the summer solstice, but with species-specific seasonal patterns. Day length set a window of opportunity for radial growth. Within this window, the probability of daily growth was constrained particularly by air and soil moisture, resulting in intermittent growth to occur only on 29 to 77 days (30% to 80%) within the growth period. The number of days with growth largely determined annual growth, whereas the growth period length contributed less. We call for accounting for these non-linear intra-annual and species-specific growth dynamics in tree and forest models to reduce uncertainties in predictions under climate change.
  •  
4.
  • Hentschel, Rainer, et al. (författare)
  • Simulation of stand transpiration based on a xylem water flow model for individual trees
  • 2013
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 182, s. 31-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying the water exchange between a forest stand and the atmosphere is of major interest for the prediction of future growth conditions and the planning of silvicultural treatments. In the present study, we address (i) the uncertainties of sap flow estimations at the tree level and (ii) the performance of the simulation of stand transpiration. Terrestrial laser scan images (TLS) of a mature beech stand (Fagus sylvatica L) in Southwestern Germany serve as input data for a representation of the aboveground tree architecture of the study stand. In the single-tree xylem water flow model (XWF) used here, 98 beech trees are represented by 3D graphs of connected cylinders with explicit orientation and size. Beech-specific hydraulic parameters and physical properties of individual trees determine the physiological response of the tree model to environmental conditions. The XWF simulations are performed without further calibration to sap flow measurements. The simulations reliably match up with sap flow estimates derived from sap flow density measurements. The density measurements strongly depend on individual sapwood area estimates and the characterization of radial sap flow density gradients with xylem depth. Although the observed pure beech stand is even-aged, we observe a high variability in sap flow rates among the individual trees. Simulations of the individual sap flow rates show a corresponding variability due to the distribution of the crown projection area in the canopy and the different proportions of sapwood area. Stand transpiration is obtained by taking the sum of 98 single-tree simulations and the corresponding sap flow estimations, which are then compared with the stand-level root water uptake model (RWU model) simulation. Using the RWU model results in a 35% higher simulation of seasonal stand transpiration relative to the XWF model. These findings demonstrate the importance of individual tree dimensions and stand heterogeneity assessments in estimating stand water use. As a consequence of species-specific model parameterization and precise TLS-based stand characterization, the XWF model is applicable to various sites and tree species and is a promising tool for predicting the possible water supply limitations of pure and mixed forest stands. (C) 2013 Elsevier B.V. All rights reserved.
  •  
5.
  •  
6.
  • Treydte, Kerstin, et al. (författare)
  • Recent human-induced atmospheric drying across Europe unprecedented in the last 400 years
  • 2024
  • Ingår i: NATURE GEOSCIENCE. - 1752-0894 .- 1752-0908. ; 17, s. 58-65
  • Tidskriftsartikel (refereegranskat)abstract
    • The vapor pressure deficit reflects the difference between how much moisture the atmosphere could and actually does hold, a factor that fundamentally affects evapotranspiration, ecosystem functioning, and vegetation carbon uptake. Its spatial variability and long-term trends under natural versus human-influenced climate are poorly known despite being essential for predicting future effects on natural ecosystems and human societies such as crop yield, wildfires, and health. Here we combine regionally distinct reconstructions of pre-industrial summer vapor pressure deficit variability from Europe's largest oxygen-isotope network of tree-ring cellulose with observational records and Earth system model simulations with and without human forcing included. We demonstrate that an intensification of atmospheric drying during the recent decades across different European target regions is unprecedented in a pre-industrial context and that it is attributed to human influence with more than 98% probability. The magnitude of this trend is largest in Western and Central Europe, the Alps and Pyrenees region, and the smallest in southern Fennoscandia. In view of the extreme drought and compound events of the recent years, further atmospheric drying poses an enhanced risk to vegetation, specifically in the densely populated areas of the European temperate lowlands. The atmosphere has dried across most regions of Europe in recent decades, a trend that can be attributed primarily to human impacts, according to tree ring records spanning 400 years and Earth system model simulations.
  •  
7.
  • Wieloch, Thomas, et al. (författare)
  • Intramolecular 13C analysis of tree rings provides multiple plant ecophysiology signals covering decades
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of carbon isotope contents of plant organic matter provide important information in diverse fields such as plant breeding, ecophysiology, biogeochemistry and paleoclimatology. They are currently based on 13C/12C ratios of specific, whole metabolites, but we show here that intramolecular ratios provide higher resolution information. In the glucose units of tree-ring cellulose of 12 tree species, we detected large differences in 13C/12C ratios (>10‰) among carbon atoms, which provide isotopically distinct inputs to major global C pools, including wood and soil organic matter. Thus, considering position-specific differences can improve characterisation of soil-to-atmosphere carbon fluxes and soil metabolism. In a Pinus nigra tree-ring archive formed from 1961 to 1995, we found novel 13C signals, and show that intramolecular analysis enables more comprehensive and precise signal extraction from tree rings, and thus higher resolution reconstruction of plants’ responses to climate change. Moreover, we propose an ecophysiological mechanism for the introduction of a 13C signal, which links an environmental shift to the triggered metabolic shift and its intramolecular 13C signature. In conclusion, intramolecular 13C analyses can provide valuable new information about long-term metabolic dynamics for numerous applications.
  •  
8.
  • Wieloch, Thomas, et al. (författare)
  • Tree-ring cellulose exhibits several interannual 13C signals on the intramolecular level
  • 2018
  • Ingår i: Geophysical Research Abstracts.
  • Konferensbidrag (refereegranskat)abstract
    • Measurements of carbon isotope contents (13C/12C, δ 13C) in tree rings provide retrospective information about the short and long-term dynamics of plant ecophysiological, and paleo-environmental traits. They are commonly based on 13C/12C ratios of cellulose, and interpreted with respect to fractionation related to CO2 diffusion into plants and its fixation by Rubisco (diffusion-Rubisco - DR - fractionation). However, primary metabolites such as glucose are known to exhibit intramolecular 13C/12C differences of the order of 10h which reflect 13C fractionation by enzyme reactions downstream of Rubisco (Post-Rubisco - PR - fractionation). PR fractionation is not commonly considered in dendrochronological studies. It has not yet been investigated whether glucose monomers of cellulose show intramolecular 13C differences. Furthermore, it is unknown whether PR fractionation varies among years, and whether DR and PR fractionations introduce distinct 13C/12C signals. To test this, we isolated the glucose monomers of Pinus nigra tree rings, and determined 13C/12C ratios of all intramolecular glucose carbon positions by quantitative 13C NMR. The resulting dataset consists of 6 time series of positional 13C/12C ratios with annual resolution, extending from 1961 to 1995. Tree-ring glucose exhibits intramolecular 13C/12C differences of the order of 10h. Cluster analysis revealed several independent intramolecular 13C signals. These signals constitute distinct channels of information about both the DR interface and associated environmental triggers, as well as PR processes related to downstream C allocation. Thus, analysis of intramolecular 13C signals can extract more information with better quality from tree rings. This might enhance our understanding of biogeochemical, ecophysiological and paleo-environmental phenomena.
  •  
9.
  • Yu, Kailiang, et al. (författare)
  • Forest demography and biomass accumulation rates are associated with transient mean tree size vs. density scaling relations
  • 2024
  • Ingår i: PNAS Nexus. - 2752-6542. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Linking individual and stand-level dynamics during forest development reveals a scaling relationship between mean tree size and tree density in forest stands, which integrates forest structure and function. However, the nature of this so-called scaling law and its variation across broad spatial scales remain unquantified, and its linkage with forest demographic processes and carbon dynamics remains elusive. In this study, we develop a theoretical framework and compile a broad-scale dataset of long-term sample forest stands (n = 1,433) from largely undisturbed forests to examine the association of temporal mean tree size vs. density scaling trajectories (slopes) with biomass accumulation rates and the sensitivity of scaling slopes to environmental and demographic drivers. The results empirically demonstrate a large variation of scaling slopes, ranging from −4 to −0.2, across forest stands in tropical, temperate, and boreal forest biomes. Steeper scaling slopes are associated with higher rates of biomass accumulation, resulting from a lower offset of forest growth by biomass loss from mortality. In North America, scaling slopes are positively correlated with forest stand age and rainfall seasonality, thus suggesting a higher rate of biomass accumulation in younger forests with lower rainfall seasonality. These results demonstrate the strong association of the transient mean tree size vs. density scaling trajectories with forest demography and biomass accumulation rates, thus highlighting the potential of leveraging forest structure properties to predict forest demography, carbon fluxes, and dynamics at broad spatial scales.
  •  
10.
  • Zweifel, Roman, et al. (författare)
  • Why trees grow at night
  • 2021
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 231:6, s. 2174-2185
  • Tidskriftsartikel (refereegranskat)abstract
    • The timing of diel stem growth of mature forest trees is still largely unknown, as empirical data with high temporal resolution have not been available so far. Consequently, the effects of day-night conditions on tree growth remained uncertain. Here we present the first comprehensive field study of hourly-resolved radial stem growth of seven temperate tree species, based on 57 million underlying data points over a period of up to 8 yr. We show that trees grow mainly at night, with a peak after midnight, when the vapour pressure deficit (VPD) is among the lowest. A high VPD strictly limits radial stem growth and allows little growth during daylight hours, except in the early morning. Surprisingly, trees also grow in moderately dry soil when the VPD is low. Species-specific differences in diel growth dynamics show that species able to grow earlier during the night are associated with the highest number of hours with growth per year and the largest annual growth increment. We conclude that species with the ability to overcome daily water deficits faster have greater growth potential. Furthermore, we conclude that growth is more sensitive than carbon uptake to dry air, as growth stops before stomata are known to close.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (9)
konferensbidrag (1)
Typ av innehåll
refereegranskat (10)
Författare/redaktör
Schleucher, Jurgen (2)
Zieminska, Kasia (2)
Holst, Jutta (2)
Vesterdal, Lars (2)
Frank, David (2)
Zweifel, Roman (2)
visa fler...
Simpson, David, 1961 (1)
Chen, Han Y. H. (1)
Linderholm, Hans W., ... (1)
Ciais, Philippe (1)
Verheyen, Kris (1)
Wimmer, Rupert (1)
Friedrich, Michael (1)
Stenlid, Jan (1)
Phillips, Oliver L. (1)
Poulter, Benjamin (1)
Karlsson, Per Erik (1)
Jaroszewicz, Bogdan (1)
Dahlgren, Jonas (1)
Pretzsch, Hans (1)
Allan, Eric (1)
Fischer, Markus (1)
Koricheva, Julia (1)
Ampoorter, Evy (1)
Barbaro, Luc (1)
Jactel, Hervé (1)
Baeten, Lander (1)
Carnol, Monique (1)
Castagneyrol, Bastie ... (1)
Charbonnier, Yohan (1)
Dawud, Seid Muhie (1)
De Wandeler, Hans (1)
Guyot, Virginie (1)
Joly, Francois-Xavie ... (1)
Muys, Bart (1)
Nguyen, Diem (1)
Ratcliffe, Sophia (1)
Raulund-Rasmussen, K ... (1)
Scherer-Lorenzen, Mi ... (1)
van der Plas, Fons (1)
Wilson, Rob (1)
Esper, Jan (1)
Pugh, Thomas A M (1)
Seftigen, Kristina, ... (1)
Bruelheide, Helge (1)
Kambach, Stephan (1)
Jucker, Tommaso (1)
Bastias, Cristina C. (1)
Bauhus, Juergen (1)
Benavides, Raquel (1)
visa färre...
Lärosäte
Uppsala universitet (3)
Lunds universitet (3)
Umeå universitet (2)
Göteborgs universitet (1)
Chalmers tekniska högskola (1)
Sveriges Lantbruksuniversitet (1)
visa fler...
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Lantbruksvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy