SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gezari Suvi) "

Sökning: WFRF:(Gezari Suvi)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bellm, Eric C., et al. (författare)
  • The Zwicky Transient Facility : System Overview, Performance, and First Results
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:995
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg(2) field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.
  •  
2.
  • Frederick, Sara, et al. (författare)
  • A Family Tree of Optical Transients from Narrow-line Seyfert 1 Galaxies
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 920:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility (ZTF) has discovered five events (0.01 < z < 0.4) belonging to an emerging class of active galactic nuclei (AGNs) undergoing smooth, large-amplitude, and rapidly rising flares. This sample consists of several transients initially classified as supernovae with narrow spectral lines. However, upon closer inspection, all of the host galaxies display Balmer lines with FWHM(H beta) similar to 900-1400 km s(-1), characteristic of a narrow-line Seyfert 1 (NLSy1) galaxy. The transient events are long lived, over 400 days on average in the observed frame. We report UV and X-ray follow-up of the flares and observe persistent UV emission, with two of the five transients detected with luminous X-ray emission, ruling out a supernova interpretation. We compare the properties of this sample to previously reported flaring NLSy1 galaxies and find that they fall into three spectroscopic categories: 1) Balmer line profiles and Fe ii complexes typical of NLSy1s, 2) strong He ii profiles, and 3) He ii profiles including Bowen fluorescence features. The latter are members of the growing class of AGN flares attributed to enhanced accretion reported by Trakhtenbrot et al. We consider physical interpretations in the context of related transients from the literature. For example, two of the sources show high-amplitude rebrightening in the optical, ruling out a simple tidal disruption event scenario for those transients. We conclude that three of the sample belong to the Trakhtenbrot et al. class and two are tidal disruption events in NLSy1s. We also hypothesize as to why NLSy1s are preferentially the sites of such rapid enhanced flaring activity.
  •  
3.
  • Frederick, Sara, et al. (författare)
  • A New Class of Changing-look LINERs
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 883:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of six active galactic nuclei (AGNs) caught turning on during the first nine months of the Zwicky Transient Facility (ZTF) survey. The host galaxies were classified as low-ionization nuclear emissionline region galaxies (LINERs) by weak narrow forbidden line emission in their archival SDSS spectra, and detected by ZTF as nuclear transients. In five of the cases, we found via follow-up spectroscopy that they had transformed into broad-line AGNs, reminiscent of the changing-look LINER iPTF16bco. In one case, ZTF18aajupnt/ AT2018dyk, follow-up Hubble Space Telescope ultraviolet and ground-based optical spectra revealed the transformation into a narrow-line Seyfert 1 with strong [Fe VII, X, XIV] and He II lambda 4686 coronal lines. Swift monitoring observations of this source reveal bright UV emission that tracks the optical flare, accompanied by a luminous soft X-ray flare that peaks similar to 60 days later. Spitzer follow-up observations also detect a luminous midinfrared flare, implying a large covering fraction of dust. Archival light curves of the entire sample from CRTS, ATLAS, and ASAS-SN constrain the onset of the optical nuclear flaring from a prolonged quiescent state. Here we present the systematic selection and follow-up of this new class of changing-look LINERs, compare their properties to previously reported changing-look Seyfert galaxies, and conclude that they are a unique class of transients well-suited to test the uncertain physical processes associated with the LINER accretion state.
  •  
4.
  • Hammerstein, Erica, et al. (författare)
  • The Final Season Reimagined : 30 Tidal Disruption Events from the ZTF-I Survey
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 942:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tidal disruption events (TDEs) offer a unique way to study dormant black holes. While the number of observed TDEs has grown thanks to the emergence of wide-field surveys in the past few decades, questions regarding the nature of the observed optical, UV, and X-ray emission remain. We present a uniformly selected sample of 30 spectroscopically classified TDEs from the Zwicky Transient Facility Phase I survey operations with follow-up Swift UV and X-ray observations. Through our investigation into correlations between light-curve properties, we recover a shallow positive correlation between the peak bolometric luminosity and decay timescales. We introduce a new spectroscopic class of TDE, TDE-featureless, which are characterized by featureless optical spectra. The new TDE-featureless class shows larger peak bolometric luminosities, peak blackbody temperatures, and peak blackbody radii. We examine the differences between the X-ray bright and X-ray faint populations of TDEs in this sample, finding that X-ray bright TDEs show higher peak blackbody luminosities than the X-ray faint subsample. This sample of optically selected TDEs is the largest sample of TDEs from a single survey yet, and the systematic discovery, classification, and follow-up of this sample allows for robust characterization of TDE properties, an important stepping stone looking forward toward the Rubin era.
  •  
5.
  • Mahabal, Ashish, et al. (författare)
  • Machine Learning for the Zwicky Transient Facility
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:997
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility is a large optical survey in multiple filters producing hundreds of thousands of transient alerts per night. We describe here various machine learning (ML) implementations and plans to make the maximal use of the large data set by taking advantage of the temporal nature of the data, and further combining it with other data sets. We start with the initial steps of separating bogus candidates from real ones, separating stars and galaxies, and go on to the classification of real objects into various classes. Besides the usual methods (e.g., based on features extracted from light curves) we also describe early plans for alternate methods including the use of domain adaptation, and deep learning. In a similar fashion we describe efforts to detect fast moving asteroids. We also describe the use of the Zooniverse platform for helping with classifications through the creation of training samples, and active learning. Finally we mention the synergistic aspects of ZTF and LSST from the ML perspective.
  •  
6.
  • Perley, Daniel A., et al. (författare)
  • The fast, luminous ultraviolet transient AT2018cow : extreme supernova, or disruption of a star by an intermediate-mass black hole?
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 484:1, s. 1031-1049
  • Tidskriftsartikel (refereegranskat)abstract
    • Wide-field optical surveys have begun to uncover large samples of fast (t(rise) less than or similar to 5 d), luminous (M-peak < 18), blue transients. While commonly attributed to the breakout of a supernova shock into a dense wind, the great distances to the transients of this class found so far have hampered detailed investigation of their properties. We present photometry and spectroscopy from a comprehensive worldwide campaign to observe AT 2018cow (ATLAS 18qqn), the first fast-luminous optical transient to be found in real time at low redshift. Our first spectra (<2 days after discovery) are entirely featureless. A very broad absorption feature suggestive of near-relativistic velocities develops between 3 and 8 days, then disappears. Broad emission features of H and He develop after >10 days. The spectrum remains extremely hot throughout its evolution, and the photospheric radius contracts with time (receding below R < 10 (14) cm after 1 month). This behaviour does not match that of any known supernova, although a relativistic jet within a fallback supernova could explain some of the observed features. Alternatively, the transient could originate from the disruption of a star by an intermediate-mass black hole, although this would require long-lasting emission of highly super-Eddington thermal radiation. In either case, AT 2018cow suggests that the population of fast luminous transients represents a new class of astrophysical event. Intensive follow-up of this event in its late phases, and of any future events found at comparable distance, will be essential to better constrain their origins.
  •  
7.
  • Reusch, Simeon, et al. (författare)
  • Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino
  • 2022
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 128:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The origins of the high-energy cosmic neutrino flux remain largely unknown. Recently, one high-energy neutrino was associated with a tidal disruption event (TDE). Here we present AT2019fdr, an exceptionally luminous TDE candidate, coincident with another high-energy neutrino. Our observations, including a bright dust echo and soft late-time x-ray emission, further support a TDE origin of this flare. The probability of finding two such bright events by chance is just 0.034%. We evaluate several models for neutrino production and show that AT2019fdr is capable of producing the observed high-energy neutrino, reinforcing the case for TDEs as neutrino sources.
  •  
8.
  • Shahbandeh, Melissa, et al. (författare)
  • JWST observations of dust reservoirs in type IIP supernovae 2004et and 2017eaw
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:4, s. 6048-6060
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova (SN) explosions have been sought for decades as a possible source of dust in the Universe, providing the seeds of galaxies, stars, and planetary systems. SN 1987A offers one of the most promising examples of significant SN dust formation, but until the James Webb Space Telescope (JWST), instruments have traditionally lacked the sensitivity at both late times (>1 yr post-explosion) and longer wavelengths (i.e. >10 μm) to detect analogous dust reservoirs. Here we present JWST/MIRI observations of two historic Type IIP SNe, 2004et and SN 2017eaw, at nearly 18 and 5 yr post-explosion, respectively. We fit the spectral energy distributions as functions of dust mass and temperature, from which we are able to constrain the dust geometry, origin, and heating mechanism. We place a 90 per cent confidence lower limit on the dust masses for SNe 2004et and 2017eaw of >0.014 and >4 × 10−4 M⊙, respectively. More dust may exist at even colder temperatures or may be obscured by high optical depths. We conclude dust formation in the ejecta to be the most plausible and consistent scenario. The observed dust is radiatively heated to ∼100–150 K by ongoing shock interaction with the circumstellar medium. Regardless of the best fit or heating mechanism adopted, the inferred dust mass for SN 2004et is the second highest (next to SN 1987A) mid-infrared inferred dust mass in extragalactic SNe thus far, promoting the prospect of SNe as potential significant sources of dust in the Universe.
  •  
9.
  • Stein, Robert, et al. (författare)
  • A tidal disruption event coincident with a high-energy neutrino
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; :5, s. 510-518
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmic neutrinos provide a unique window into the otherwise hidden mechanism of particle acceleration in astrophysical objects. The IceCube Collaboration recently reported the likely association of one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino. AT2019dsg was identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility. The probability of finding any coincident radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multizone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for petaelectronvolt neutrino production. Assuming that the association is genuine, our observations suggest that tidal disruption events with mildly relativistic outflows contribute to the cosmic neutrino flux. The tidal disruption event AT2019dsg is probably associated with a high-energy neutrino, suggesting that such events can contribute to the cosmic neutrino flux. The electromagnetic emission is explained in terms of a central engine, a photosphere and an extended synchrotron-emitting outflow.
  •  
10.
  • Stein, Robert, et al. (författare)
  • Neutrino follow-up with the Zwicky transient facility : results from the first 24 campaigns
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 521:4, s. 5046-5063
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility (ZTF) performs a systematic neutrino follow-up programme, searching for optical counterparts to high-energy neutrinos with dedicated Target-of-Opportunity (ToO) observations. Since first light in March 2018, ZTF has taken prompt observations for 24 high-quality neutrino alerts from the IceCube Neutrino Observatory, with a median latency of 12.2 h from initial neutrino detection. From two of these campaigns, we have already reported tidal disruption event (TDE) AT 2019dsg and likely TDE AT 2019fdr as probable counterparts, suggesting that TDEs contribute >7.8 per cent of the astrophysical neutrino flux. We here present the full results of our programme through to December 2021. No additional candidate neutrino sources were identified by our programme, allowing us to place the first constraints on the underlying optical luminosity function of astrophysical neutrino sources. Transients with optical absolutes magnitudes brighter that -21 can contribute no more than 87 per cent of the total, while transients brighter than -22 can contribute no more than 58 per cent of the total, neglecting the effect of extinction and assuming they follow the star formation rate. These are the first observational constraints on the neutrino emission of bright populations such as superluminous supernovae. None of the neutrinos were coincident with bright optical AGN flares comparable to that observed for TXS 0506+056/IC170922A, with such optical blazar flares producing no more than 26 per cent of the total neutrino flux. We highlight the outlook for electromagnetic neutrino follow-up programmes, including the expected potential for the Rubin Observatory.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy