SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ghavami Saeid) "

Sökning: WFRF:(Ghavami Saeid)

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alizadeh, Javad, et al. (författare)
  • Mevalonate Cascade Inhibition by Simvastatin Induces the Intrinsic Apoptosis Pathway via Depletion of Isoprenoids in Tumor Cells
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The mevalonate (MEV) cascade is responsible for cholesterol biosynthesis and the formation of the intermediate metabolites geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) used in the prenylation of proteins. Here we show that the MEV cascade inhibitor simvastatin induced significant cell death in a wide range of human tumor cell lines, including glioblastoma, astrocytoma, neuroblastoma, lung adenocarcinoma, and breast cancer. Simvastatin induced apoptotic cell death via the intrinsic apoptotic pathway. In all cancer cell types tested, simvastatin-induced cell death was not rescued by cholesterol, but was dependent on GGPP-and FPP-depletion. We confirmed that simvastatin caused the translocation of the small Rho GTPases RhoA, Cdc42, and Rac1/2/3 from cell membranes to the cytosol in U251 (glioblastoma), A549 (lung adenocarcinoma) and MDA-MB231( breast cancer). Simvastatin-induced Rho-GTP loading significantly increased in U251 cells which were reversed with MEV, FPP, GGPP. In contrast, simvastatin did not change Rho-GTP loading in A549 and MDA-MB-231. Inhibition of geranylgeranyltransferase I by GGTi-298, but not farnesyltransferase by FTi-277, induced significant cell death in U251, A549, and MDA-MB-231. These results indicate that MEV cascade inhibition by simvastatin induced the intrinsic apoptosis pathway via inhibition of Rho family prenylation and depletion of GGPP, in a variety of different human cancer cell lines.
  •  
2.
  • Barczyk, K., et al. (författare)
  • Serum cytochrome c indicates in vivo apoptosis and can serve as a prognostic marker during cancer therapy
  • 2005
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 116:2, s. 167-173
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite significant progress in cancer therapy, the outcome of the treatment is often unfavorable. Better treatment monitoring would not only allow an individual more effective, patient-adjusted therapy, but also it would eliminate some of the side effects. Using a cytochrome c ELISA that was modified to increase sensitivity, we demonstrate that serum cytochrome c is a sensitive apoptotic marker in vivo reflecting therapy-induced cell death burden. Furthermore, increased serum cytochrome c level is a negative prognostic marker. Cancer patients whose serum cytochrome c level was normal 3 years ago have a twice as high probability to be still alive, as judged from sera samples collected for years, analyzed recently and matched with survival data. Moreover, we show that serum cytochrome c and serum LDH-activity reflect different stages and different forms of cell death. Cellular cytochrome c release is specific for apoptosis, whereas increased LDH activity is an indicator of (secondary) necrosis. Whereas serum LDH activity reflects the "global" degree of cell death over a period of time, the sensitive cytochrome c-based method allows confirmation of the individual cancer therapy-induced and spontaneous cell death events. The combination of cytochrome c with tissue-specific markers may provide the foundation for precise monitoring of apoptosis in vivo, by "lab-on-the-chip" technology. (c) 2005 Wiley-Liss, Inc.
  •  
3.
  • Behrooz, Amir Barzegar, et al. (författare)
  • Integrating Multi-Omics Analysis for Enhanced Diagnosis and Treatment of Glioblastoma: A Comprehensive Data-Driven Approach
  • 2023
  • Ingår i: Cancers. - : MDPI. - 2072-6694. ; 15:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple Summary The most prevalent and lethal primary brain tumor, glioblastoma multiforme (GBM), exhibits fast growth and widespread invasion and has a poor prognosis. The recurrence and mortality rates of GBM patients are still significant due to the intricacy of their molecular process. Therefore, screening GBM biomarkers is urgently required to demonstrate the therapy impact and enhance the prognosis. The findings of this study revealed 11 genes (UBC, HDAC1, CTNNB1, TRIM28, CSNK2A1, RBBP4, TP53, APP, DAB1, PINK1, and RELN), five miRNAs (has-mir-221-3p, hsa-mir-30a-5p, hsa-mir-15a-5p, has-mir-130a-3p, and hsa-let-7b-5p), six metabolites (HDL, N6-acetyl-L-lysine, cholesterol, formate, N, N-dimethylglycine/xylose, and X2. piperidinone), and 15 distinct signaling pathways that are essential for the development of GBM disease. The top genes, miRNAs, and metabolite signatures identified in this study may be used to develop early diagnosis procedures and construct individualized therapeutic approaches to GBM. The most aggressive primary malignant brain tumor in adults is glioblastoma (GBM), which has poor overall survival (OS). There is a high relapse rate among patients with GBM despite maximally safe surgery, radiation therapy, temozolomide (TMZ), and aggressive treatment. Hence, there is an urgent and unmet clinical need for new approaches to managing GBM. The current study identified modules (MYC, EGFR, PIK3CA, SUZ12, and SPRK2) involved in GBM disease through the NeDRex plugin. Furthermore, hub genes were identified in a comprehensive interaction network containing 7560 proteins related to GBM disease and 3860 proteins associated with signaling pathways involved in GBM. By integrating the results of the analyses mentioned above and again performing centrality analysis, eleven key genes involved in GBM disease were identified. ProteomicsDB and Gliovis databases were used for determining the gene expression in normal and tumor brain tissue. The NetworkAnalyst and the mGWAS-Explorer tools identified miRNAs, SNPs, and metabolites associated with these 11 genes. Moreover, a literature review of recent studies revealed other lists of metabolites related to GBM disease. The enrichment analysis of identified genes, miRNAs, and metabolites associated with GBM disease was performed using ExpressAnalyst, miEAA, and MetaboAnalyst tools. Further investigation of metabolite roles in GBM was performed using pathway, joint pathway, and network analyses. The results of this study allowed us to identify 11 genes (UBC, HDAC1, CTNNB1, TRIM28, CSNK2A1, RBBP4, TP53, APP, DAB1, PINK1, and RELN), five miRNAs (hsa-mir-221-3p, hsa-mir-30a-5p, hsa-mir-15a-5p, hsa-mir-130a-3p, and hsa-let-7b-5p), six metabolites (HDL, N6-acetyl-L-lysine, cholesterol, formate, N, N-dimethylglycine/xylose, and X2. piperidinone) and 15 distinct signaling pathways that play an indispensable role in GBM disease development. The identified top genes, miRNAs, and metabolite signatures can be targeted to establish early diagnostic methods and plan personalized GBM treatment strategies.
  •  
4.
  • Chaabane, Wiem, et al. (författare)
  • Human-Gyrovirus-Apoptin Triggers Mitochondrial Death Pathway—Nur77 is Required for Apoptosis Triggering :
  • 2014
  • Ingår i: Neoplasia. - : Elsevier. - 1522-8002 .- 1476-5586. ; 16:9, s. 679-693
  • Tidskriftsartikel (refereegranskat)abstract
    • The human gyrovirus derived protein Apoptin (HGV-Apoptin) a homologue of the chicken anemia virus Apoptin (CAV-Apoptin), a protein with high cancer cells selective toxicity, trigger apoptosis selectively in cancer cells. In this paper, we show that HGV-Apoptin acts independently from the death receptor pathway as it induces apoptosis in similar rates in Jurkat cells deficient in either FADD-function or caspase-8 (key players of the extrinsic pathway) and their parental clones. HGV-Apoptin induces apoptosis via the activation of the mitochondrial intrinsic pathway. It induces both mitochondrial inner and outer membrane permebilization, characterized by the loss of the mitochondrial potential and the release into cytoplasm of the pro-apoptotic molecules including apoptosis inducing factor (AIF) and cytochrome c. HGV-Apoptin acts via the apoptosome, as lack of expression of APAF1 in murine embryonic fibroblast strongly protected the cells from HGV-Apoptin-induced apoptosis. Moreover, QVD-oph a broad-spectrum caspase inhibitor delayed HGV-Apoptin-induced death. On the other hand, overexpression of the anti-apoptotic BCL-XL confers resistance to HGV-Apoptin induced cell death. In contrast, cells that lack the expression of the pro-apoptotic BAX and BAK are protected from HGV-Apoptin induced apoptosis. Furthermore, HGV-Apoptin acts independently from p53 signal but triggers the cytoplasmic translocation of Nur77. Taking together this data indicate that HGV-Apoptin acts through the mitochondrial pathway, in a caspase-dependent manner but independently from the death receptor pathway.
  •  
5.
  • Cieslar-Pobuda, Artur, et al. (författare)
  • Cell Type Related Differences in Staining with Pentameric Thiophene Derivatives
  • 2014
  • Ingår i: Cytometry Part A. - : John Wiley & Sons. - 1552-4922 .- 1552-4930. ; 85A:7, s. 628-635
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorescent compounds capable of staining cells selectively without affecting their viability are gaining importance in biology and medicine. Recently, a new family of optical dyes, denoted luminescent conjugated oligothiophenes (LCOs), has emerged as an interesting class of highly emissive molecules for studying various biological phenomena. Properly functionalized LCOs have been utilized for selective identification of disease-associated protein aggregates and for selective detection of distinct cells. Herein, we present data on differential staining of various cell types, including cancer cells. The differential staining observed with newly developed pentameric LCOs is attributed to distinct side chain functionalities along the thiophene backbone. Employing flow cytometry and fluorescence microscopy we examined a library of LCOs for stainability of a variety of cell lines. Among tested dyes we found promising candidates that showed strong or moderate capability to stain cells to different extent, depending on target cells. Hence, LCOs with diverse imidazole motifs along the thiophene backbone were identified as an interesting class of agents for staining of cancer cells, whereas LCOs with other amino acid side chains along the backbone showed a complete lack of staining for the cells included in the study. Furthermore, for p-HTMI,a LCO functionalized with methylated imidazole moieties, the staining was dependent on the p53 status of the cells, indicating that the molecular target for the dye is a cellular component regulated by p53. We foresee that functionalized LCOs will serve as a new class of optical ligands for fluorescent classification of cells and expand the toolbox of reagents for fluorescent live imaging of different cells.
  •  
6.
  • Cieślar-Pobuda, Artur, et al. (författare)
  • The expression pattern of PFKFB3 enzyme distinguishes between induced-pluripotent stem cells and cancer stem cells.
  • 2015
  • Ingår i: Oncotarget. - Albany, NY, USA : Impact Journals LLC. - 1949-2553. ; 6:30, s. 29753--29770
  • Tidskriftsartikel (refereegranskat)abstract
    • Induced pluripotent stem cells (iPS) have become crucial in medicine and biology. Several studies indicate their phenotypic similarities with cancer stem cells (CSCs) and a propensity to form tumors. Thus it is desirable to identify a trait which differentiates iPS populations and CSCs. Searching for such a feature, in this work we compare the restriction (R) point-governed regulation of cell cycle progression in different cell types (iPS, cancer, CSC and normal cells) based on the expression profile of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase3 (PFKFB3) and phosphofructokinase (PFK1). Our study reveals that PFKFB3 and PFK1 expression allows discrimination between iPS and CSCs. Moreover, cancer and iPS cells, when cultured under hypoxic conditions, alter their expression level of PFKFB3 and PFK1 to resemble those in CSCs. We also observed cell type-related differences in response to inhibition of PFKFB3. This possibility to distinguish CSC from iPS cells or non-stem cancer cells by PFKB3 and PFK1 expression improves the outlook for clinical application of stem cell-based therapies and for more precise detection of CSCs.
  •  
7.
  • Ghavami, Saeid, et al. (författare)
  • Airway mesenchymal cell death by mevalonate cascade inhibition : integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins
  • 2014
  • Ingår i: Biochimica et Biophysica Acta. Molecular Cell Research. - : Elsevier. - 0167-4889 .- 1879-2596. ; 1843:7, s. 1259-1271
  • Tidskriftsartikel (refereegranskat)abstract
    • HMG-CoA reductase, the proximal rate-limiting enzyme in the mevalonate pathway, is inhibited by statins. Beyond their cholesterol lowering impact, statins have pleiotropic effects and their use is linked to improved lung health. We have shown that mevalonate cascade inhibition induces apoptosis and autophagy in cultured human airway mesenchymal cells. Here, we show that simvastatin also induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in these cells. We tested whether coordination of ER stress, autophagy and apoptosis determines survival or demise of human lung mesenchymal cells exposed to statin. We observed that simvastatin exposure activates UPR (activated transcription factor 4, activated transcription factor 6 and IRE1 alpha) and caspase-4 in primary human airway fibroblasts and smooth muscle cells. Exogenous mevalonate inhibited apoptosis, autophagy and UPR, but exogenous cholesterol was without impact, indicating that sterol intermediates are involved with mechanisms mediating statin effects. Caspase-4 inhibition decreased simvastatin-induced apoptosis, whereas inhibition of autophagy by ATG7 or ATG3 knockdown significantly increased cell death. In BAX(-/-)/BAIC(-/) murine embryonic fibroblasts, simvastatin-triggered apoptotic and UPR events were abrogated, but autophagy flux was increased leading to cell death via necrosis. Our data indicate that mevalonate cascade inhibition, likely associated with depletion of sterol intermediates, can lead to cell death via coordinated apoptosis, autophagy, and ER stress. The interplay between these pathways appears to be principally regulated by autophagy and Bcl-2-family pro-apoptotic proteins. These findings uncover multiple mechanisms of action of statins that could contribute to refining the use of such agent in treatment of lung disease.
  •  
8.
  • Ghavami, Saeid, et al. (författare)
  • Apoptosis in liver diseases - detection and therapeutic applications
  • 2005
  • Ingår i: Medical Science Monitor. - 1234-1010 .- 1643-3750. ; 11:11, s. RA337-RA345
  • Forskningsöversikt (refereegranskat)abstract
    • The liver is continuously exposed to a large antigenic load that includes pathogens, toxins, tumor cells and dietary antigens. Amongst the hepatitis viruses, only hepatitis B virus (HBV) and hepatitis C virus (HCV) cause chronic hepatitis, which can progress to cirrhosis and hepatocellular carcinoma. Of the different antiviral defense systems employed by the tissue, apoptosis significantly contributes to the prevention of viral replication, dissemination, and persistence. Loss of tolerance to the liver autoantigens may result in autoimmune hepatitis (AIH). This review outlines the recent findings that highlight the role and mechanisms of apoptotic processes in the course of liver diseases. Among factors that contribute to liver pathology, we discuss the role of tumor necrosis factor (TNF)-alpha, HBx, ds-PKR, TRAIL, FasL, and IL-1 alpha. Since TNF and FasL-induced hepatocyte apoptosis is implicated in a wide range of liver diseases, including viral hepatitis, alcoholic hepatitis, ischemia/reperfusion liver injury, and fulminant hepatic failure, these items will be discussed in greater detail in this review. We also highlight some recent discoveries that pave the way for the development of new therapeutic strategies by protecting hepatocytes (for example by employing Bcl-2, Bcl-X-L or A1/Bfl-1, IAPs, or synthetic caspase inhibitors), or by the induction of apoptosis in stellate cells. The assessment of the severity of liver disease, as well as monitoring of patients with chronic liver disease, remains a major challenge in clinical hepatology practice. Therefore, a separate chapter is devoted to a novel cytochrome c - based method useful for the diagnosis and monitoring of fulminant hepatitis.
  •  
9.
  • Ghavami, Saeid, 1965-, et al. (författare)
  • Autophagy and Apoptosis Dysfunction in Neurodegenerative Disorders
  • 2014
  • Ingår i: Progress in Neurobiology. - Kidlington, Oxford, United Kingdom : Pergamon Press. - 0301-0082 .- 1873-5118. ; 112, s. 24-49
  • Forskningsöversikt (refereegranskat)abstract
    • Autophagy and apoptosis are basic physiologic processes contributing to the maintenance of cellular homeostasis. Autophagy encompasses pathways that target long-lived cytosolic proteins and damaged organelles. It involves a sequential set of events including double membrane formation, elongation, vesicle maturation and finally delivery of the targeted materials to the lysosome. Apoptotic cell death is best described through its morphology. It is characterized by cell rounding, membrane blebbing, cytoskeletal collapse, cytoplasmic condensation, and fragmentation, nuclear pyknosis, chromatin condensation/fragmentation, and formation of membrane-enveloped apoptotic bodies, that are rapidly phagocytosed by macrophages or neighboring cells. Neurodegenerative disorders are becoming increasingly prevalent, especially in the Western societies, with larger percentage of members living to an older age. They have to be seen not only as a health problem, but since they are care-intensive, they also carry a significant economic burden. Deregulation of autophagy plays a pivotal role in the etiology and/or progress of many of these diseases. Herein, we briefly review the latest findings that indicate the involvement of autophagy in neurodegenerative diseases. We provide a brief introduction to autophagy and apoptosis pathways focusing on the role of mitochondria and lysosomes. We then briefly highlight pathophysiology of common neurodegenerative disorders like Alzheimer's diseases, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Then, we describe functions of autophagy and apoptosis in brain homeostasis, especially in the context of the aforementioned disorders. Finally, we discuss different ways that autophagy and apoptosis modulation may be employed for therapeutic intervention during the maintenance of neurodegenerative disorders.
  •  
10.
  • Ghavami, Saeid, et al. (författare)
  • Autophagy regulates trans fatty acid-mediated apoptosis in primary cardiac myofibroblasts.
  • 2012
  • Ingår i: Biochimica et Biophysica Acta. Molecular Cell Research. - : Elsevier BV. - 0167-4889 .- 1879-2596. ; 1823:12, s. 2274-2286
  • Tidskriftsartikel (refereegranskat)abstract
    • Trans fats are not a homogeneous group of molecules and less is known about the cellular effects of individual members of the group. Vaccenic acid (VA) and elaidic acid (EA) are the predominant trans monoenes in ruminant fats and vegetable oil, respectively. Here, we investigated the mechanism of cell death induced by VA and EA on primary rat ventricular myofibroblasts (rVF). The MTT assay demonstrated that both VA and EA (200μM, 0-72h) reduced cell viability in rVF (P<0.001). The FACS assay confirmed that both VA and EA induced apoptosis in rVF, and this was concomitant with elevation in cleaved caspase-9, -3 and -7, but not caspase-8. VA and EA decreased the expression ratio of Bcl2:Bax, induced Bax translocation to mitochondria and decrease in mitochondrial membrane potential (Δψ). BAX and BAX/BAK silencing in mouse embryonic fibroblasts (MEF) inhibited VA and EA-induced cell death compared to the corresponding wild type cells. Transmission electron microscopy revealed that VA and EA also induced macroautophagosome formation in rVF, and immunoblot analysis confirmed the induction of several autophagy markers: LC3-β lipidation, Atg5-12 accumulation, and increased beclin-1. Finally, deletion of autophagy genes, ATG3 and ATG5 significantly inhibited VA and EA-induced cell death (P<0.001). Our findings show for the first time that trans fat acid (TFA) induces simultaneous apoptosis and autophagy in rVF. Furthermore, TFA-induced autophagy is required for this pro-apoptotic effect. Further studies to address the effect of TFA on the heart may reveal significant translational value for prevention of TFA-linked heart disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42
Typ av publikation
tidskriftsartikel (31)
forskningsöversikt (9)
bokkapitel (2)
Typ av innehåll
refereegranskat (41)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Ghavami, Saeid (41)
Los, Marek Jan (22)
Hashemi, Mohammad (12)
Klonisch, Thomas (11)
Cieslar-Pobuda, Artu ... (7)
Booy, Evan P. (4)
visa fler...
Maddika, Subbareddy (4)
Alizadeh, Javad (3)
Chazin, Walter J (3)
Hashemi, M. (3)
Rafat, Mehrdad (3)
Wang, Mei (2)
Kominami, Eiki (2)
Bonaldo, Paolo (2)
Minucci, Saverio (2)
De Milito, Angelo (2)
Kågedal, Katarina (2)
Liu, Wei (2)
Clarke, Robert (2)
Kumar, Ashok (2)
Brest, Patrick (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Melino, Gerry (2)
Albert, Matthew L (2)
Lopez-Otin, Carlos (2)
Liu, Bo (2)
Zeki, Amir A. (2)
Rezaei Moghadam, Ade ... (2)
Wiechec, Emilia, 198 ... (2)
Hatch, Grant M. (2)
Hombach-Klonisch, Sa ... (2)
Harris, James (2)
Zhang, Hong (2)
Zorzano, Antonio (2)
Bozhkov, Peter (2)
Petersen, Morten (2)
Przyklenk, Karin (2)
Noda, Takeshi (2)
Zhao, Ying (2)
Kampinga, Harm H. (2)
Zhang, Lin (2)
Harris, Adrian L. (2)
Hill, Joseph A. (2)
Tannous, Bakhos A (2)
Segura-Aguilar, Juan (2)
Dikic, Ivan (2)
Kaminskyy, Vitaliy O ... (2)
Nishino, Ichizo (2)
Wesselborg, Sebastia ... (2)
visa färre...
Lärosäte
Linköpings universitet (42)
Karolinska Institutet (3)
Lunds universitet (2)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
Umeå universitet (1)
visa fler...
Uppsala universitet (1)
Stockholms universitet (1)
visa färre...
Språk
Engelska (42)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (30)
Naturvetenskap (21)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy