SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ghezellou Misagh 1988 ) "

Sökning: WFRF:(Ghezellou Misagh 1988 )

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ghezellou, Misagh, 1988-, et al. (författare)
  • Influence of Different Hydrocarbons on Chemical Vapor Deposition Growth and Surface Morphological Defects in 4H‐SiC Epitaxial Layers
  • 2024
  • Ingår i: Physica status solidi. B, Basic research. - : WILEY-V C H VERLAG GMBH. - 0370-1972 .- 1521-3951.
  • Tidskriftsartikel (refereegranskat)abstract
    • Controlled epitaxial growth of 4H-SiC is essential for advancing both power electronics and quantum technologies. This study explores how different carbon sources—methane and propane—affect the surface morphology of these epitaxial layers. By varying C/Si ratios and using the two mentioned hydrocarbons as the carbon source in chloride-based epitaxial growth of 4H-SiC layers, it is unveiled that methane results in an exceptionally smooth surface. However, it pronounces surface irregularities such as short step bunching and dislocation-related etch pits. Moreover, methane amplifies the overgrowth of triangular defects with the 4H polytype. In contrast, the introduction of propane causes a step-bunched surface together with inclined line-like surface morphological defects. Notably, a majority of the triangular defects exhibit a pure 3C character without an overgrown 4H polytype. It is shown that these outcomes could be attributed to different sticking coefficients and diffusivity of the molecular species resulting from different carbon sources on the 4H-SiC surface during the epitaxial growth. This research also uncovers the underlying origins and mechanisms responsible for various surface morphological defects.
  •  
2.
  • Ghezellou, Misagh, 1988-, et al. (författare)
  • The role of boron related defects in limiting charge carrier lifetime in 4H–SiC epitaxial layers
  • 2023
  • Ingår i: APL Materials. - : American Institute of Physics (AIP). - 2166-532X. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the main challenges in realizing 4H–SiC (silicon carbide)-based bipolar devices is the improvement of minority carrier lifetime in as-grown epitaxial layers. Although Z1/2 has been identified as the dominant carrier lifetime limiting defect, we report on B-related centers being another dominant source of recombination and acting as lifetime limiting defects in 4H–SiC epitaxial layers. Combining time-resolved photoluminescence (TRPL) measurement in near band edge emission and 530 nm, deep level transient spectroscopy, and minority carrier transient spectroscopy (MCTS), it was found that B related deep levels in the lower half of the bandgap are responsible for killing the minority carriers in n-type, 4H–SiC epitaxial layers when the concentration of Z1/2 is already low. The impact of these centers on the charge carrier dynamics is investigated by correlating the MCTS results with temperature-dependent TRPL decay measurements. It is shown that the influence of shallow B acceptors on the minority carrier lifetime becomes neutralized at temperatures above ∼422 K. Instead, the deep B related acceptor level, known as the D-center, remains active until temperatures above ∼570 K. Moreover, a correlation between the deep level concentrations, minority carrier lifetimes, and growth parameters indicates that intentional nitrogen doping hinders the formation of deep B acceptor levels. Furthermore, tuning growth parameters, including growth temperature and C/Si ratio, is shown to be crucial for improving the minority carrier lifetime in as-grown 4H–SiC epitaxial layers.
  •  
3.
  • Gogova, Daniela, 1967-, et al. (författare)
  • Epitaxial growth of β-Ga2O3 by hot-wall MOCVD
  • 2022
  • Ingår i: AIP Advances. - : AIP Publishing. - 2158-3226. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The hot-wall metalorganic chemical vapor deposition (MOCVD) concept, previously shown to enable superior material quality and high performance devices based on wide bandgap semiconductors, such as Ga(Al)N and SiC, has been applied to the epitaxial growth of beta-Ga2O3. Epitaxial beta-Ga2O3 layers at high growth rates (above 1 mu m/h), at low reagent flows, and at reduced growth temperatures (740 degrees C) are demonstrated. A high crystalline quality epitaxial material on a c-plane sapphire substrate is attained as corroborated by a combination of x-ray diffraction, high-resolution scanning transmission electron microscopy, and spectroscopic ellipsometry measurements. The hot-wall MOCVD process is transferred to homoepitaxy, and single-crystalline homoepitaxial beta-Ga2O3 layers are demonstrated with a 201 rocking curve width of 118 arc sec, which is comparable to those of the edge-defined film-fed grown (201) beta-Ga2O3 substrates, indicative of similar dislocation densities for epilayers and substrates. Hence, hot-wall MOCVD is proposed as a prospective growth method to be further explored for the fabrication of beta-Ga2O3.
  •  
4.
  • Hesselmeier, Erik, et al. (författare)
  • Qudit-Based Spectroscopy for Measurement and Control of Nuclear-Spin Qubits in Silicon Carbide
  • 2024
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 132:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Nuclear spins with hyperfine coupling to single electron spins are highly valuable quantum bits. Here we probe and characterize the particularly rich nuclear-spin environment around single silicon vacancy color centers (V2) in 4H-SiC. By using the electron spin-3/2 qudit as a four level sensor, we identify several sets of Si29 and C13 nuclear spins through their hyperfine interaction. We extract the major components of their hyperfine coupling via optical detected nuclear magnetic resonance, and assign them to shells in the crystal via the density function theory simulations. We utilize the ground-state level anticrossing of the electron spin for dynamic nuclear polarization and achieve a nuclear-spin polarization of up to 98±6%. We show that this scheme can be used to detect the nuclear magnetic resonance signal of individual spins and demonstrate their coherent control. Our work provides a detailed set of parameters and first steps for future use of SiC as a multiqubit memory and quantum computing platform.
  •  
5.
  • Karhu, Robin, 1987-, et al. (författare)
  • The Origin and Formation Mechanism of an Inclined Line-like Defect in 4H-SiC Epilayers
  • 2022
  • Ingår i: Physica status solidi. B, Basic research. - : Wiley-V C H Verlag GMBH. - 0370-1972 .- 1521-3951. ; 259:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin and the formation mechanism of a surface morphological defect in 4H-SiC epilayers are reported. The defect appears on the surface of an epilayer as an inclined line-like feature at an angle of +/- 80 degrees to the step-flow direction [ 11 2 over bar 0 ] . The defect is confirmed to originate from a threading screw dislocation intersecting the surface and its orientation is controlled by the sign of the Burgers vector of the dislocation. The defect forms through the interaction of local spiral growth associated with threading screw dislocations and step-flow growth related to the substrate offcut. The defect mainly appears in the epilayers grown through chloride-based chemistry, where in situ surface preparation of the substrate is performed in H-2 + HCl at a relatively high temperature.
  •  
6.
  • Lukin, Daniil M., et al. (författare)
  • Two-Emitter Multimode Cavity Quantum Electrodynamics in Thin-Film Silicon Carbide Photonics
  • 2023
  • Ingår i: Physical Review X. - : American Physical Society. - 2160-3308. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Color centers are point defects in crystals that can provide an optical interface to a long-lived spin state for distributed quantum information processing applications. An outstanding challenge for color center quantum technologies is the integration of optically coherent emitters into scalable thin-film photonics, a prerequisite for large-scale photonics integration of color centers within a commercial foundry process. Here, we report on the integration of near-transform-limited silicon vacancy (VSi) defects into microdisk resonators fabricated in a CMOS-compatible 4H-silicon carbide-on-insulator platform. We demonstrate a single-emitter cooperativity of up to 0.8 as well as optical superradiance from a pair of color centers coupled to the same cavity mode. We investigate the effect of multimode interference on the photon scattering dynamics from this multiemitter cavity quantum electrodynamics system. These results are crucial for the development of quantum networks in silicon carbide and bridge the classical-quantum photonics gap by uniting optically coherent spin defects with wafer-scalable, state-of-the-art photonics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy