SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ghofrani Hossein A.) "

Sökning: WFRF:(Ghofrani Hossein A.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Galiè, Nazzareno, et al. (författare)
  • Initial Use of Ambrisentan plus Tadalafil in Pulmonary Arterial Hypertension
  • 2015
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 373:9
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Data on the effect of initial combination therapy with ambrisentan and tadalafil on long-term outcomes in patients with pulmonary arterial hypertension are scarce.METHODS: In this event-driven, double-blind study, we randomly assigned, in a 2:1:1 ratio, participants with World Health Organization functional class II or III symptoms of pulmonary arterial hypertension who had not previously received treatment to receive initial combination therapy with 10 mg of ambrisentan plus 40 mg of tadalafil (combination-therapy group), 10 mg of ambrisentan plus placebo (ambrisentan-monotherapy group), or 40 mg of tadalafil plus placebo (tadalafil-monotherapy group), all administered once daily. The primary end point in a time-to-event analysis was the first event of clinical failure, which was defined as the first occurrence of a composite of death, hospitalization for worsening pulmonary arterial hypertension, disease progression, or unsatisfactory long-term clinical response.RESULTS: The primary analysis included 500 participants; 253 were assigned to the combination-therapy group, 126 to the ambrisentan-monotherapy group, and 121 to the tadalafil-monotherapy group. A primary end-point event occurred in 18%, 34%, and 28% of the participants in these groups, respectively, and in 31% of the pooled-monotherapy group (the two monotherapy groups combined). The hazard ratio for the primary end point in the combination-therapy group versus the pooled-monotherapy group was 0.50 (95% confidence interval [CI], 0.35 to 0.72; P<0.001). At week 24, the combination-therapy group had greater reductions from baseline in N-terminal pro-brain natriuretic peptide levels than did the pooled-monotherapy group (mean change, -67.2% vs. -50.4%; P<0.001), as well as a higher percentage of patients with a satisfactory clinical response (39% vs. 29%; odds ratio, 1.56 [95% CI, 1.05 to 2.32]; P=0.03) and a greater improvement in the 6-minute walk distance (median change from baseline, 48.98 m vs. 23.80 m; P<0.001). The adverse events that occurred more frequently in the combination-therapy group than in either monotherapy group included peripheral edema, headache, nasal congestion, and anemia.CONCLUSIONS: Among participants with pulmonary arterial hypertension who had not received previous treatment, initial combination therapy with ambrisentan and tadalafil resulted in a significantly lower risk of clinical-failure events than the risk with ambrisentan or tadalafil monotherapy. (Funded by Gilead Sciences and GlaxoSmithKline; AMBITION ClinicalTrials.gov number, NCT01178073.).
  •  
2.
  • Giordano, Luca, et al. (författare)
  • Essential Role of Mitochondrial Cytochrome c Oxidase Subunit 4 Isoform 2 (Cox4i2) for Acute Pulmonary Oxygen Sensing
  • 2022
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier. - 0005-2728 .- 1879-2650. ; 1863:Supplement
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial Cytochrome c Oxidase Subunit 4 Isoform 2 (Cox4i2) is essential for acute oxygen sensing and signaling in pulmonary arterial smooth muscle cells (PASMCs) by triggering the production of superoxide during acute hypoxia [1]. However, the molecular mechanism underlying Cox4i2-dependent oxygen sensing remains elusive. We analysed oxygen-dependent respiration by high resolution respirometry, redox changes of the electron transport chain (ETC) by RAMAN spectroscopy, and supercomplex formation by blue native gel analysis of PASMCs isolated from wild type (WT) and Cox4i2-/- mice. To understand the role of Cox4i2-specific cysteine residues we determined hypoxia-induced superoxide production and oxygen affinity in a mouse epithelial cell line (CMT167 cells) overexpressing either Cox4i1, or WT Cox4i2, or Cox4i2 mutants (C41S, C55A, C109S). Respiration and supercomplex formation were similar in WT and Cox4i2-/- PASMCs. Interestingly, hypoxia-induced reduction of ETC components (NADH, ubiquinol, and reduced cytochrome c) was prevented in Cox4i2-/- PASMCs. CMT167 cells expressing either Cox4i1, or Cox4i2 mutants lacked hypoxia-induced superoxide release, which was detected only in cells expressing WT Cox4i2. In contrast, overexpression of Cox4i1, or Cox4i2, or Cox4i2 mutants did not affect oxygen affinity. Our findings suggest that Cox4i2 does not alter superoxide production by rearrangement of supercomplexes, whereas its specific cysteines are needed for the superoxide release. In conclusion, Cox4i2 plays a major role in the hypoxia-induced reduction of ETC components, likely mediated through its redox-active cysteine residues.
  •  
3.
  • Sommer, Natascha, et al. (författare)
  • Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing
  • 2020
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 6:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondria play an important role in sensing both acute and chronic hypoxia in the pulmonary vasculature, but their primary oxygen-sensing mechanism and contribution to stabilization of the hypoxia-inducible factor (HIF) remains elusive. Alteration of the mitochondrial electron flux and increased superoxide release from complex III has been proposed as an essential trigger for hypoxic pulmonary vasoconstriction (HPV). We used mice expressing a tunicate alternative oxidase, AOX, which maintains electron flux when respiratory complexes III and/or IV are inhibited. Respiratory restoration by AOX prevented acute HPV and hypoxic responses of pulmonary arterial smooth muscle cells (PASMC), acute hypoxia-induced redox changes of NADH and cytochrome c, and superoxide production. In contrast, AOX did not affect the development of chronic hypoxia-induced pulmonary hypertension and HIF-1α stabilization. These results indicate that distal inhibition of the mitochondrial electron transport chain in PASMC is an essential initial step for acute but not chronic oxygen sensing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy