SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ghorbani Ramin 1981 ) "

Sökning: WFRF:(Ghorbani Ramin 1981 )

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ghorbani, Ramin, 1981-, et al. (författare)
  • Fitting of single-exhalation profiles using a pulmonary gas exchange model : application to carbon monoxide
  • 2019
  • Ingår i: Journal of Breath Research. - : Institute of Physics Publishing (IOPP). - 1752-7155 .- 1752-7163. ; 13:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Real-time breath gas analysis coupled to gas exchange modeling is emerging as promising strategy to enhance the information gained from breath tests. It is shown for exhaled breath carbon monoxide (eCO), a potential biomarker for oxidative stress and respiratory diseases, that a weighted, nonlinear least-squares fit of simulated to measured expirograms can be used to extract physiological parameters, such as airway and alveolar concentrations and diffusing capacities. Experimental CO exhalation profiles are acquired with high time-resolution and precision using mid-infrared tunable diode laser absorption spectroscopy and online breath sampling. A trumpet model with axial diffusion is employed to generate eCO profiles based on measured exhalation flow rates and volumes. The concept is demonstrated on two healthy non-smokers exhaling at a flow rate of 250 ml s−1 during normal breathing and at 120 ml s−1 after 10 s of breath-holding. The obtained gas exchange parameters of the two subjects are in a similar range, but clearly distinguishable. Over a series of twenty consecutive expirograms, the intra-individual variation in the alveolar parameters is less than 6%. After a 2 h exposure to 10 ± 2 ppm CO, end-tidal and alveolar CO concentrations are significantly increased (by factors of 2.7 and 4.9 for the two subjects) and the airway CO concentration is slightly higher, while the alveolar diffusing capacity is unchanged compared to before exposure. Using model simulations, it is found that a three-fold increase in maximum airway CO flux and a reduction in alveolar diffusing capacity by 60% lead to clearly distinguishable changes in the exhalation profile shape. This suggests that extended breath CO analysis has clinical relevance in assessing airway inflammation and chronic obstructive pulmonary disease. Moreover, the novel methodology contributes to the standardization of real-time breath gas analysis.
  •  
3.
  • Ghorbani, Ramin, 1981-, et al. (författare)
  • Impact of breath sampling on exhaled carbon monoxide
  • 2020
  • Ingår i: Journal of Breath Research. - : Institute of Physics Publishing (IOPP). - 1752-7155 .- 1752-7163. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of breath sampling on exhaled carbon monoxide (eCO) and related pulmonary gas exchange parameters is investigated in a study with 32 healthy non-smokers. Mid-infrared tunable diode laser absorption spectroscopy and well-controlled online sampling is used to precisely measure mouth- and nose-exhaled CO expirograms at exhalation flow rates (EFRs) of 250, 120 and 60 ml s−1, and for 10 s of breath-holding followed by exhalation at 120 ml s−1. A trumpet model with axial diffusion is employed to fit simulated exhalation profiles to the experimental expirograms, which provides equilibrium airway and alveolar CO concentrations and the average lung diffusing capacity in addition to end-tidal concentrations. For all breathing maneuvers, excellent agreement is found between mouth- and nose-exhaled end-tidal CO (ETCO), and the individual values for ETCO and alveolar diffusing capacity are consistent across maneuvers. The eCO parameters clearly show a dependence on EFR, where the lung diffusing capacity increases with EFR, while ETCO slightly decreases. End-tidal CO is largely independent of ambient air CO and alveolar diffusing capacity. While airway CO is slightly higher than, and correlates strongly with, ambient air CO, and there is a weak correlation with ETCO, the results point to negligible endogenous airway CO production in healthy subjects. An EFR of around 120 ml s−1 can be recommended for clinical eCO measurements. The employed method provides means to measure variations in endogenous CO, which can improve the interpretation of exhaled CO concentrations and the diagnostic value of eCO tests in clinical studies.Clinical trial registration number: 2017/306-31
  •  
4.
  • Ghorbani, Ramin, 1981- (författare)
  • Real-time breath gas analysis of carbon monoxide : laser-based detection and pulmonary gas exchange modeling
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Breath gas analysis is a promising approach for non-invasive medical diagnostics and physiological monitoring. Real-time, breath-cycle resolved biomarker detection facilitates data interpretation and has the potential to improve the diagnostic value of breath tests as exhalation profiles carry spatiotemporal information about biomarker origin and gas exchange in the respiratory tract. This thesis presents and scrutinizes a novel methodology for the analysis of real-time breath data, where single-exhalation profiles are simulated using a pulmonary gas exchange model and least-squares fitted to measured expirograms to extract airway and alveolar contributions and diffusing capacities. The methodology is demonstrated on exhaled breath carbon monoxide (eCO), a candidate biomarker for oxidative stress and respiratory diseases. The thesis mainly covers (1) the construction of a compact optical sensor based on tunable diode laser absorption spectroscopy (TDLAS) in the mid-infrared region (4.7 μm) for selective and precise real-time detection of CO in breath and ambient air (detection limit 9 ± 5 ppb at 0.1 s), (2) the design of an advanced online breath sampling system, (3) the implementation of a trumpet model with axial diffusion (TMAD) to simulate the CO gas exchange, and (4) the application of extended eCO analysis in clinical studies to establish the healthy non-smoker baseline of the eCO parameters and to study the response to CO and wood smoke exposure. It is shown that the TMAD adequately describes the gas exchange during systemic CO elimination for different breathing patterns, and that there is no difference between eCO parameters from mouth- and nose exhalations. Expirogram shape and eCO parameters exhibit a dependence on the exhalation flow rate, but for a given breathing maneuverer, the parameters lie in a narrow range. Airway CO is close to and correlates with ambient air CO, indicating negligible airway production in the healthy population. The alveolar diffusing capacity is independent of endogenous CO, even after exposure to elevated exogenous CO, and could be used to assess lung diffusion abnormalities. Compared to CO exposure, no clear additional effect of exposure to wood smoke particles on eCO is observed. The discrimination between endogenous and exogenous CO sources remains a challenge.
  •  
5.
  • King, Julian, et al. (författare)
  • Physiological modeling of exhaled compounds
  • 2020. - 2
  • Ingår i: Breathborne biomarkers and the human volatilome. - : Elsevier. - 9780128199671 - 9780128223970 ; , s. 43-62
  • Bokkapitel (refereegranskat)abstract
    • Blood flow and ventilatory flow strongly influence the concentrations of volatile organic compounds (VOCs) in exhaled breath. The physicochemical properties of a compound (e.g., water solubility) additionally determine if the concentration of the compound in breath reflects the alveolar concentration, the concentration in the upper airways, or a mixture of both. Mathematical modeling based on mass balance equations helps to understand how measured breath concentrations are related to their corresponding blood concentrations and physiological parameters, such as metabolic rates and endogenous production rates. In addition, the influence of inhaled compounds on their exhaled concentrations can be quantified and appropriate correction formulas can be derived. Isoprene and acetone, two endogenous VOCs with very different water solubility, have been modeled to explain the essential features of their behavior in breath. This chapter introduces the theory of physiological modeling of exhaled VOCs, with examples of isoprene and acetone.
  •  
6.
  • Qu, Zhechao, et al. (författare)
  • Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions
  • 2016
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 88:7, s. 3754-3760
  • Tidskriftsartikel (refereegranskat)abstract
    • Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer−Lambert’s law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950−1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy