SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Giacomini Enrico) "

Sökning: WFRF:(Giacomini Enrico)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Giacomini, Enrico, et al. (författare)
  • A Survey on Drones for Planetary Exploration: Evolution and Challenges
  • 2022
  • Ingår i: 2022 30th Mediterranean Conference on Control and Automation (MED). - : IEEE. ; , s. 583-590
  • Konferensbidrag (refereegranskat)abstract
    • During the last decade, the efforts in space exploration have increased massively and led to a need for new ways to examine planets and other celestial bodies. The modern tendency is to create spacecraft able to scout the surface from a higher point of view, where drones have shown to be most helpful. Even if the benefits brought by this type of technology are considerable, the challenges are still difficult to overcome. This article presents a comprehensive literature review on drone technologies for planetary exploration, focusing mainly on the difficulties encountered. Considerable complications derive from the unknown environment, affecting most of the design, the mathematical model of the body, its controllability, and overall levels of autonomy. Various solutions to these challenges are proposed based on past and future missions. Furthermore, a look into the future gives an idea of possible technological developments and ways to provide the most efficient aerial exploration of other planets.
  •  
2.
  •  
3.
  • Giacomini, Enrico (författare)
  • Investigating Aerodynamic Challenges for Rotorcraft Airfoil in the Martian Athmosphere
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Over the past decade, there has been a considerable increase in space exploration efforts, driving the need for new methods to examine planets and other celestial bodies. The current trend involves designing spacecraft capable of surveying surfaces from elevated positions, with drones proving to be more suited for the task. . The focus of space missions has primarily been on exploring Mars, as evidenced by the pioneering flight of the Ingenuity helicopter in 2021. The Martian environment poses significant aerodynamic challenges due to its thin atmosphere and low pressure, complicating drone flight. The generation of lift is problematic owing to the scant atmosphere and the restricted dimensions required for space missions, resulting in low-chord Reynolds number flows. Despite the reduction in skin friction drag due to lower viscosity, the decrease in airfoil efficiency is significantly compromised, with only a partial counterbalance by the reduced gravitational pull. Two main challenges must be addressed: low chord-based Reynolds number flows and Martian dust. The former results in the formation of Laminar Separation Bubbles (LSB), severely impairing the aerodynamic efficiency of the airfoil. Concurrently, the accumulation of dust particles on the airfoil’s surface significantly affects its performance, altering its geometry and surface roughness. Thus, it is crucial to accurately determine the presence and location of both separation bubbles and particle deposition to predict performance degradation. \\This thesis presents a comprehensive survey on drones for planetary exploration and an analysis conducted on a cambered plate with 6$\%$ camber and 1$\%$ thickness, ideal for the types of flows considered. The studies are carried out for Reynolds number flows, namely 20,000 and 50,000, to observe the effects of rotor and airfoil dimensions. The computational study is performed using ANSYS Fluent, utilising a two-dimensional CFD model with a C-type mesh and the gamma-Re ($\gamma-Re_{\theta}$) transition model, which aids in capturing the behaviour of these flow regimes. Additionally, for the dust study, two phases are created: a primary phase, the atmosphere, and a secondary phase, the dust particles. The volume fraction of particles is assumed to be small enough to imply that the primary phase influences the secondary, but not vice versa (one-way coupling). To assess particle adhesion, a deposition model has been developed to check for the deposition of dust particles, working in conjunction with the Discrete Phase Modelling (DPM), which simulates the trajectory of particles within the control volume. The deposition model comprises a particle transport model, which accounts for the forces acting on the particles, and a particle-wall interaction model, which determines the particles' rebound or adhesion. The results are presented and discussed at the end of the thesis, along with a brief discussion of future studies focusing on alternative assumptions for dust modelling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy