SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Giddy Isabelle) "

Sökning: WFRF:(Giddy Isabelle)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • du Plessis, Marcel, 1990, et al. (författare)
  • The Daily-Resolved Southern Ocean Mixed Layer: Regional Contrasts Assessed Using Glider Observations
  • 2022
  • Ingår i: Journal of Geophysical Research-Oceans. - : American Geophysical Union (AGU). - 2169-9275 .- 2169-9291. ; 127:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Water mass transformation in the Southern Ocean is vital for driving the large-scale overturning circulation, which transports heat from the surface to the ocean interior. Using profiling gliders, this study investigates the role of summertime buoyancy forcing and wind-driven processes on the intraseasonal (1-10 days) mixed layer thermohaline variability in three Southern Ocean regions southwest of Africa important for water mass transformation-the Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ), and Marginal Ice Zone (MIZ). At intraseasonal time scales, heat flux was shown as the main driver of buoyancy gain in all regions. In the SAZ and MIZ, shallow mixed layers and strong stratification enhanced mixed layer buoyancy gain by trapping incoming heat, while buoyancy loss resulted primarily from the entrainment of cold, salty water from below. In the PFZ, rapid mixing linked to Southern Ocean storms set persistently deep mixed layers and suppressed mixed layer intraseasonal thermohaline variability. In the polar regions, lateral stirring of meltwater from seasonal sea-ice melt dominated daily mixed layer salinity variability. We propose that these meltwater fronts are advected to the PFZ during late summer, indicating the potential for seasonal sea-ice freshwater to impact a region where the upwelling limb of overturning circulation reaches the surface. This study reveals a regional dependence of how the mixed layer thermohaline properties respond to small spatiotemporal processes, emphasizing the importance of surface forcing occurring between 1 and 10 days on the mixed layer water mass transformation in the Southern Ocean.
  •  
2.
  •  
3.
  •  
4.
  • Giddy, Isabelle (författare)
  • Turbulence in the sea ice impacted Southern Ocean and its implications for primary production and carbon export
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The sea ice impacted Southern Ocean, south of the Antarctic Circumpolar Current, is one of the most important regions on earth for the cycling of carbon and distribution of heat and freshwater around the globe. Here, along-isopycnal upwelling of warm, carbon-rich circumpolar deep water coincides with the annual growth and melt of Antarctic sea ice that represents one of the worlds largest surface water transformations. The air-sea-ice buoyancy exchanges and biological processes that change the surface water properties therefore have global consequences, as they set the properties of downwelling intermediate waters that enter the upper branch of the global thermohaline circulation. The region hosts some of the largest uncertainties in global climate models. The reason for this stems from two sources. Firstly, the spatio-temporal resolution of global climate models is limited by computational constraints such that smaller scale processes need to be parameterized. Secondly, the challenges associated with making observations in or near sea ice and in the harsh and remote conditions of the Southern Ocean means that the region is sparsely sampled, and as such, the parameterizations of the small scale and turbulent terms in global climate models are validated based only on a few in situ samples. This thesis concerns the observation and interpretation of (sub)meso- to micro scale turbulence and its implications in the sea ice impacted Southern Ocean. I aimed to understand the 0.01-1 km scale physical and biological processes that drive changes in the properties of the upper ocean following sea ice melt, using groundbreaking sustained high temporal and spatial resolution observations made by gliders. There are three main findings. Firstly, we find that sea ice melt enhances stirring of submesoscale flows (0.1-10 km) and therefore lateral variability in the upper ocean, but simultaneously constrains vertical fluxes between the ocean interior and surface. Secondly, turbulent diapycnal mixing and double diffusive convection (0.1-1 m scales) drive the warming of the subsurface winter water, therefore mediating fluxes between the ocean interior and surface. Finally, phytoplankton respond favourably to larger volume sea ice that enhances winter mixing of nutrients from the deep reservoir and upper ocean stratification in the summer. The preliminary evidence from this study suggests that the resultant higher intensity phytoplankton bloom translates to enhanced short term carbon export but not necessarily long term export. Overall, we show, using observations, that the variability and transport of heat and freshwater flux in the sea ice impacted Southern Ocean is sensitive to sea ice, with downstream impacts on phytoplankton, the biological carbon pump and ultimately the upper cell of the meridional overturning circulation.
  •  
5.
  •  
6.
  • Gregor, L., et al. (författare)
  • GliderTools: A Python Toolbox for Processing Underwater Glider Data
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Underwater gliders have become widely used in the last decade. This has led to a proliferation of data and the concomitant development of tools to process the data. These tools are focused primarily on converting the data from its raw form to more accessible formats and often rely on proprietary programing languages. This has left a gap in the processing of glider data for academics, who often need to perform secondary quality control (QC), calibrate, correct, interpolate and visualize data. Here, we present GliderTools, an open-source Python package that addresses these needs of the glider user community. The tool is designed to change the focus from the processing to the data. GliderTools does not aim to replace existing software that converts raw data and performs automatic first-order QC. In this paper, we present a set of tools, that includes secondary cleaning and calibration, calibration procedures for bottle samples, fluorescence quenching correction, photosynthetically available radiation (PAR) corrections and data interpolation in the vertical and horizontal dimensions. Many of these processes have been described in several other studies, but do not exist in a collated package designed for underwater glider data. Importantly, we provide potential users with guidelines on how these tools are used so that they can be easily and rapidly accessible to a wide range of users that span the student to the experienced researcher. We recognize that this package may not be all-encompassing for every user and we thus welcome community contributions and promote GliderTools as a community-driven project for scientists.
  •  
7.
  • Swart, Sebastiaan, 1983, et al. (författare)
  • Submesoscale Fronts in the Antarctic Marginal Ice Zone and Their Response to Wind Forcing
  • 2020
  • Ingår i: Geophysical Research Letters. - 0094-8276. ; 47:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Submesoscale flows in the ocean are energetic motions, O(1–10 km), that influence stratification and the distributions of properties, such as heat and carbon. They are believed to play an important role in sea‐ice‐impacted oceans by modulating air‐sea‐ice fluxes and sea‐ice extent. The intensity of these flows and their response to wind forcing are unobserved in the sea‐ice regions of the Southern Ocean. We present the first submesoscale‐resolving observations in the Antarctic marginal ice zone (MIZ) collected by surface and underwater autonomous vehicles, for >3 months in austral summer. We observe salinity‐dominated lateral density fronts occurring at sub‐kilometer scales. Surface winds are shown to modify the magnitude of the mixed‐layer density fronts, revealing strongly coupled atmosphere‐ocean processes. We posture that these wind‐front interactions occur as a continuous interplay between front slumping and vertical mixing, which leads to the dispersion of submesoscale fronts. Such processes are expected to be ubiquitous in the Southern Ocean MIZ.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy