SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Giddy J) "

Sökning: WFRF:(Giddy J)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Richards, Stephen, et al. (författare)
  • The genome of the model beetle and pest Tribolium castaneum.
  • 2008
  • Ingår i: Nature. - 1476-4687. ; 452:7190, s. 949-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Tribolium castaneum is a representative of earth’s most numerous eukaryotic order, a powerful model organism for the study of generalized insect development, and also an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved an ability to interact with a diverse chemical environment as evidenced by large expansions in odorant and gustatory receptors, as well as p450 and other detoxification enzymes. Developmental patterns in Tribolium are more representative of other arthropods than those found in Drosophila, a fact represented in gene content and function. For one, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, and some are expressed in the growth zone crucial for axial elongation in short germ development. Systemic RNAi in T. castaneum appears to use mechanisms distinct from those found in C. elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.
  •  
3.
  • Sallee, J. B., et al. (författare)
  • Southern ocean carbon and heat impact on climate
  • 2023
  • Ingår i: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. - 1364-503X .- 1471-2962. ; 381:2249
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern Ocean greatly contributes to the regulation of the global climate by controlling important heat and carbon exchanges between the atmosphere and the ocean. Rates of climate change on decadal timescales are therefore impacted by oceanic processes taking place in the Southern Ocean, yet too little is known about these processes. Limitations come both from the lack of observations in this extreme environment and its inherent sensitivity to intermittent processes at scales that are not well captured in current Earth system models. The Southern Ocean Carbon and Heat Impact on Climate programme was launched to address this knowledge gap, with the overall objective to understand and quantify variability of heat and carbon budgets in the Southern Ocean through an investigation of the key physical processes controlling exchanges between the atmosphere, ocean and sea ice using a combination of observational and modelling approaches. Here, we provide a brief overview of the programme, as well as a summary of some of the scientific progress achieved during its first half. Advances range from new evidence of the importance of specific processes in Southern Ocean ventilation rate (e.g. storm-induced turbulence, sea-ice meltwater fronts, wind-induced gyre circulation, dense shelf water formation and abyssal mixing) to refined descriptions of the physical changes currently ongoing in the Southern Ocean and of their link with global climate.This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
  •  
4.
  •  
5.
  •  
6.
  • du Plessis, Marcel, 1990, et al. (författare)
  • The Daily-Resolved Southern Ocean Mixed Layer: Regional Contrasts Assessed Using Glider Observations
  • 2022
  • Ingår i: Journal of Geophysical Research-Oceans. - : American Geophysical Union (AGU). - 2169-9275 .- 2169-9291. ; 127:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Water mass transformation in the Southern Ocean is vital for driving the large-scale overturning circulation, which transports heat from the surface to the ocean interior. Using profiling gliders, this study investigates the role of summertime buoyancy forcing and wind-driven processes on the intraseasonal (1-10 days) mixed layer thermohaline variability in three Southern Ocean regions southwest of Africa important for water mass transformation-the Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ), and Marginal Ice Zone (MIZ). At intraseasonal time scales, heat flux was shown as the main driver of buoyancy gain in all regions. In the SAZ and MIZ, shallow mixed layers and strong stratification enhanced mixed layer buoyancy gain by trapping incoming heat, while buoyancy loss resulted primarily from the entrainment of cold, salty water from below. In the PFZ, rapid mixing linked to Southern Ocean storms set persistently deep mixed layers and suppressed mixed layer intraseasonal thermohaline variability. In the polar regions, lateral stirring of meltwater from seasonal sea-ice melt dominated daily mixed layer salinity variability. We propose that these meltwater fronts are advected to the PFZ during late summer, indicating the potential for seasonal sea-ice freshwater to impact a region where the upwelling limb of overturning circulation reaches the surface. This study reveals a regional dependence of how the mixed layer thermohaline properties respond to small spatiotemporal processes, emphasizing the importance of surface forcing occurring between 1 and 10 days on the mixed layer water mass transformation in the Southern Ocean.
  •  
7.
  • Gregor, L., et al. (författare)
  • GliderTools: A Python Toolbox for Processing Underwater Glider Data
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Underwater gliders have become widely used in the last decade. This has led to a proliferation of data and the concomitant development of tools to process the data. These tools are focused primarily on converting the data from its raw form to more accessible formats and often rely on proprietary programing languages. This has left a gap in the processing of glider data for academics, who often need to perform secondary quality control (QC), calibrate, correct, interpolate and visualize data. Here, we present GliderTools, an open-source Python package that addresses these needs of the glider user community. The tool is designed to change the focus from the processing to the data. GliderTools does not aim to replace existing software that converts raw data and performs automatic first-order QC. In this paper, we present a set of tools, that includes secondary cleaning and calibration, calibration procedures for bottle samples, fluorescence quenching correction, photosynthetically available radiation (PAR) corrections and data interpolation in the vertical and horizontal dimensions. Many of these processes have been described in several other studies, but do not exist in a collated package designed for underwater glider data. Importantly, we provide potential users with guidelines on how these tools are used so that they can be easily and rapidly accessible to a wide range of users that span the student to the experienced researcher. We recognize that this package may not be all-encompassing for every user and we thus welcome community contributions and promote GliderTools as a community-driven project for scientists.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy