SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gilbert Jack A.) "

Sökning: WFRF:(Gilbert Jack A.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G., et al. (författare)
  • 2012
  • swepub:Mat__t (refereegranskat)
  •  
2.
  • Aad, G., et al. (författare)
  • 2011
  • swepub:Mat__t (refereegranskat)
  •  
3.
  • Craddock, Nick, et al. (författare)
  • Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7289, s. 713-720
  • Tidskriftsartikel (refereegranskat)abstract
    • Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed,19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated similar to 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.
  •  
4.
  • Bowers, Robert M., et al. (författare)
  • Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea
  • 2017
  • Ingår i: Nature Biotechnology. - : NATURE PUBLISHING GROUP. - 1087-0156 .- 1546-1696. ; 35:8, s. 725-731
  • Tidskriftsartikel (refereegranskat)abstract
    • We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.
  •  
5.
  • Thompson, Luke R., et al. (författare)
  • A communal catalogue reveals Earth's multiscale microbial diversity
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7681, s. 457-463
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.
  •  
6.
  • Kyrpides, Nikos C, et al. (författare)
  • Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains.
  • 2014
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1545-7885. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.
  •  
7.
  • Bernabe, Beatriz Penalver, et al. (författare)
  • Interactions between perceived stress and microbial-host immune components : two demographically and geographically distinct pregnancy cohorts
  • 2023
  • Ingår i: Translational Psychiatry. - : Springer Nature. - 2158-3188. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Higher stress during pregnancy associates with negative outcomes and elevated inflammation. The gut microbiota, reflecting environment and social interactions, alongside host immune responses have the potential to better understand perceived stress and identify when stress is excessive in pregnancy. Two U.S. cohorts of 84 pregnant individuals, composed of urban women of color and suburban white women, completed the Perceived Stress Scale-10 (PSS-10) and provided fecal and blood samples at two time points. Confirmatory Factor Analysis assessed the robustness of a two-factor PSS-10 model (Emotional Distress/ED and Self-Efficacy/SE). Gut microbiota composition was measured by 16 S rRNA amplicon sequencing and the immune system activity was assessed with a panel of 21 T-cell related cytokines and chemokines. ED levels were higher in the suburban compared to the urban cohort, but levels of SE were similar. ED and SE levels were associated with distinct taxonomical signatures and the gut microbiota data improved the prediction of SE levels compared with models based on socio-demographic characteristics alone. Integration of self-reported symptoms, microbial and immune information revealed a possible mediation effect of Bacteroides uniformis between the immune system (through CXCL11) and SE. The study identified links between distinct taxonomical and immunological signatures with perceived stress. The data are congruent with a model where gut microbiome and immune factors, both impacting and reflecting factors such as close social relationships and dietary fiber, may modulate neural plasticity resulting in increased SE during pregnancy. The predictive value of these peripheral markers merit further study.
  •  
8.
  • Chernomoretz, Ariel, et al. (författare)
  • The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium inaugural meeting report
  • 2016
  • Ingår i: Microbiome. - : Springer Science and Business Media LLC. - 2049-2618. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium is a novel, interdisciplinary initiative comprised of experts across many fields, including genomics, data analysis, engineering, public health, and architecture. The ultimate goal of the MetaSUB Consortium is to improve city utilization and planning through the detection, measurement, and design of metagenomics within urban environments. Although continual measures occur for temperature, air pressure, weather, and human activity, including longitudinal, cross-kingdom ecosystem dynamics can alter and improve the design of cities. The MetaSUB Consortium is aiding these efforts by developing and testing metagenomic methods and standards, including optimized methods for sample collection, DNA/RNA isolation, taxa characterization, and data visualization. The data produced by the consortium can aid city planners, public health officials, and architectural designers. In addition, the study will continue to lead to the discovery of new species, global maps of antimicrobial resistance (AMR) markers, and novel biosynthetic gene clusters (BGCs). Finally, we note that engineered metagenomic ecosystems can help enable more responsive, safer, and quantified cities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy