SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gill Reine) "

Sökning: WFRF:(Gill Reine)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Carr, C., et al. (författare)
  • RPC : The rosetta plasma consortium
  • 2007
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 128:1-4, s. 629-647
  • Forskningsöversikt (refereegranskat)abstract
    • The Rosetta Plasma Consortium (RPC) will make in-situ measurements of the plasma enviromnent of comet 67P/Churyumov-Gerasimenko. The consortium will provide the complementary data sets necessary for an understanding of the plasma processes in the inner coma, and the structure and evolution of the coma with the increasing cometary activity. Five sensors have been selected to achieve this: the Ion and Electron Sensor (IES), the Ion Composition Analyser (ICA), the Langmuir Probe (LAP), the Mutual Impedance Probe (MIP) and the Magnetometer (MAG). The sensors interface to the spacecraft through the Plasma Interface Unit (PIU). The consortium approach allows for scientific, technical and operational coordination, and makes Optimum use of the available mass and power resources.
  •  
3.
  • Edberg, Niklas J. T., et al. (författare)
  • Spatial distribution of low-energy plasma around comet 67P/CG from Rosetta measurements
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:11, s. 4263-4269
  • Tidskriftsartikel (refereegranskat)abstract
    • We use measurements from the Rosetta plasma consortium Langmuir probe and mutual impedance probe to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e., the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be approximate to 1-210(-6), at a cometocentric distance of 10km and at 3.1AU from the Sun. A clear 6.2h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisionless plasma within 260km from the nucleus falls off with radial distance as approximate to 1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet.
  •  
4.
  • Eriksson, Anders, et al. (författare)
  • RPC-LAP : The Rosetta Langmuir probe instrument
  • 2007
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 128:04-jan, s. 729-744
  • Forskningsöversikt (refereegranskat)abstract
    • The Rosetta dual Langmuir probe instrument, LAP, utilizes the multiple powers of a pair of spherical Langmuir probes for measurements of basic plasma parameters with the aim of providing detailed knowledge of the outgassing, ionization, and subsequent plasma processes around the Rosetta target comet. The fundamental plasma properties to be studied are the plasma density, the electron temperature, and the plasma flow velocity. However, study of electric fields up to 8 kHz, plasma density fluctuations, spacecraft potential, integrated UV flux, and dust impacts is also possible. LAP is fully integrated in the Rosetta Plasma Consortium (RPC), the instruments of which together provide a comprehensive characterization of the cometary plasma.
  •  
5.
  • Knudsen, D. J., et al. (författare)
  • Thermal ion imagers and Langmuir probes in the Swarm electric field instruments
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:2, s. 2655-2673
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Space Agency's three Swarm satellites were launched on 22 November 2013 into nearly polar, circular orbits, eventually reaching altitudes of 460 km (Swarm A and C) and 510 km (Swarm B). Swarm's multiyear mission is to make precision, multipoint measurements of low-frequency magnetic and electric fields in Earth's ionosphere for the purpose of characterizing magnetic fields generated both inside and external to the Earth, along with the electric fields and other plasma parameters associated with electric current systems in the ionosphere and magnetosphere. Electric fields perpendicular to the magnetic field.B are determined through ion drift velocity v(i) and magnetic field measurements via the relation.E. = -.vi x.B. Ion drift is derived from two-dimensional images of low-energy ion distribution functions provided by two Thermal Ion Imager (TII) sensors viewing in the horizontal and vertical planes;v(i) is corrected for spacecraft potential as determined by two Langmuir probes (LPs) which also measure plasma density ne and electron temperature T-e. The TII sensors use a microchannel-plate-intensified phosphor screen imaged by a charge-coupled device to generate high-resolution distribution images (66 x 40 pixels) at a rate of 16 s(-1). Images are partially processed on board and further on the ground to generate calibrated data products at a rate of 2 s(-1); these include.vi,.E., and ion temperature T-i in addition to electron temperature Te and plasma density n(e) from the LPs.
  •  
6.
  • Park, J., et al. (författare)
  • Estimating along-track plasma drift speed from electron density measurements by the three Swarm satellites
  • 2015
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 33:7, s. 829-835
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma convection in the high-latitude ionosphere provides important information about magnetosphere-ionosphere-thermosphere coupling. In this study we estimate the along-track component of plasma convection within and around the polar cap, using electron density profiles measured by the three Swarm satellites. The velocity values estimated from the two different satellite pairs agree with each other. In both hemispheres the estimated velocity is generally anti-sunward, especially for higher speeds. The obtained velocity is in qualitative agreement with Super Dual Auroral Radar Network data. Our method can supplement currently available instruments for ionospheric plasma velocity measurements, especially in cases where these traditional instruments suffer from their inherent limitations. Also, the method can be generalized to other satellite constellations carrying electron density probes.
  •  
7.
  • Park, Jaeheung, et al. (författare)
  • Westward tilt of low-latitude plasma blobs as observed by the Swarm constellation
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:4, s. 3187-3197
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we investigate the three-dimensional structure of low-latitude plasma blobs using multi-instrument and multisatellite observations of the Swarm constellation. During the early commissioning phase the Swarm satellites were flying at the same altitude with zonal separation of about 0.5 degrees in geographic longitude. Electron density data from the three satellites constrain the blob morphology projected onto the horizontal plane. Magnetic field deflections around blobs, which originate from field-aligned currents near the irregularity boundaries, constrain the blob structure projected onto the plane perpendicular to the ambient magnetic field. As the two constraints are given for two noncoplanar surfaces, we can get information on the three-dimensional structure of blobs. Combined observation results suggest that blobs are contained within tilted shells of geomagnetic flux tubes, which are similar to the shell structure of equatorial plasma bubbles suggested by previous studies.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy