SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gilon Patrick) "

Sökning: WFRF:(Gilon Patrick)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gylfe, Erik, et al. (författare)
  • Glucose regulation of glucagon secretion
  • 2014
  • Ingår i: Diabetes Research and Clinical Practice. - : Elsevier BV. - 0168-8227 .- 1872-8227. ; 103:1, s. 1-10
  • Forskningsöversikt (refereegranskat)abstract
    • Glucagon secreted by pancreatic alpha-cells is the major hyperglycemic hormone correcting acute hypoglycaemia (glucose counterregulation). In diabetes the glucagon response to hypoglycaemia becomes compromised and chronic hyperglucagonemia appears. There is increasing awareness that glucagon excess may underlie important manifestations of diabetes. However opinions differ widely how glucose controls glucagon secretion. The autonomous nervous system plays an important role in the glucagon response to hypoglycaemia. But it is clear that glucose controls glucagon secretion also by mechanisms involving direct effects on alpha-cells or indirect effects via paracrine factors released from non-alpha-cells within the pancreatic islets. The present review discusses these mechanisms and argues that different regulatory processes are involved in a glucose concentration-dependent manner. Direct glucose effects on the a-cell and autocrine mechanisms are probably most significant for the glucagon response to hypoglycaemia. During hyperglycaemia, when secretion from beta-and delta-cells is stimulated, paracrine inhibitory factors generate pulsatile glucagon release in opposite phase to pulsatile release of insulin and somatostatin. High concentrations of glucose have also stimulatory effects on glucagon secretion that tend to balance and even exceed the inhibitory influence. The latter actions might underlie the paradoxical hyperglucagonemia that aggravates hyperglycaemia in persons with diabetes.
  •  
2.
  • Motterle, Anna, et al. (författare)
  • Identification of islet-enriched long non-coding RNAs contributing to β-cell failure in type 2 diabetes
  • 2017
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 6:11, s. 1407-1418
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Non-coding RNAs constitute a major fraction of the β-cell transcriptome. While the involvement of microRNAs is well established, the contribution of long non-coding RNAs (lncRNAs) in the regulation of β-cell functions and in diabetes development remains poorly understood. The aim of this study was to identify novel islet lncRNAs differently expressed in type 2 diabetes models and to investigate their role in β-cell failure and in the development of the disease. Methods: Novel transcripts dysregulated in the islets of diet-induced obese mice were identified by high throughput RNA-sequencing coupled with de novo annotation. Changes in the level of the lncRNAs were assessed by real-time PCR. The functional role of the selected lncRNAs was determined by modifying their expression in MIN6 cells and primary islet cells. Results: We identified about 1500 novel lncRNAs, a number of which were differentially expressed in obese mice. The expression of two lncRNAs highly enriched in β-cells, βlinc2, and βlinc3, correlated to body weight gain and glycemia levels in obese mice and was also modified in diabetic db/. db mice. The expression of both lncRNAs was also modulated in vitro in isolated islet cells by glucolipotoxic conditions. Moreover, the expression of the human orthologue of βlinc3 was altered in the islets of type 2 diabetic patients and was associated to the BMI of the donors. Modulation of the level of βlinc2 and βlinc3 by overexpression or downregulation in MIN6 and mouse islet cells did not affect insulin secretion but increased β-cell apoptosis. Conclusions: Taken together, the data show that lncRNAs are modulated in a model of obesity-associated type 2 diabetes and that variations in the expression of some of them may contribute to β-cell failure during the development of the disease.
  •  
3.
  • Tian, Geng, 1982- (författare)
  • On the Generation of cAMP Oscillations and Regulation of the Ca2+ Store-operated Pathway in Pancreatic Islet α- and β-cells
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Insulin and glucagon are released in pulses from pancreatic β- and α-cells, respectively. Both cell types are electrically excitable, and elevation of the cytoplasmic Ca2+ concentration ([Ca2+]i) due to depolarization with voltage-dependent entry of the cation is the main trigger of hormone secretion. Store-operated Ca2+ entry  (SOCE) also contributes to the [Ca2+]i elevation and this process has been suggested to be particularly important for glucagon secretion. cAMP is another important messenger that amplifies Ca2+-triggered secretion of both hormones, but little is known about cAMP dynamics in islet cells. In type-2 diabetes, there is deteriorated β-cell function associated with elevated concentrations of fatty acids, but the underlying mechanisms are largely unknown. To clarify the processes that regulate insulin and glucagon secretion, cAMP signalling and the store-operated pathway were investigated in β- and α-cells, primarily within their natural environment in intact mouse and human islets of Langerhans. Fluorescent biosensors and total internal reflection microscopy were used to investigate signalling specifically at the plasma membrane (PM). Adrenaline increased and decreased the sub-PM cAMP concentration ([cAMP]pm) in immuno-identified α-cells and β-cells, respectively, which facilitated cell identification. Glucagon elicited [cAMP]pm oscillations in α- and β-cells, demonstrating both auto- and paracrine effects of the hormone. Whereas glucagon-like peptide 1 (GLP-1) consistently elevated [cAMP]pm in β-cells, only few α-cells responded, indicating that GLP-1 regulates glucagon secretion without changes of α-cell [cAMP]pm. Both α- and β-cells responded to glucose with pronounced oscillations of [cAMP]pm that were partially Ca2+-dependent and synchronized among islet β-cells. The glucose-induced cAMP formation was mediated by plasma membrane-bound adenylyl cyclases. Several phosphodiesterases (PDEs), including the PDE1, -3, -4, and -8 families, were required for shaping the [cAMP]pm signals and pulsatile insulin secretion. Prolonged exposure of islets to the fatty acid palmitate deteriorated glucose-stimulated insulin secretion with loss of pulsatility. This defect was associated with impaired cAMP generation, while [Ca2+]i signalling was essentially unaffected. Stromal interacting molecule 1 (STIM1) is critical for activation of SOCE by sensing the Ca2+ concentration in the endoplasmic reticulum (ER). ER Ca2+ depletion caused STIM1 aggregation, co-clustering with the PM Ca2+ channel protein Orai1 and SOCE activation. Glucose, which inhibits SOCE by filling the ER with Ca2+, reversed the PM association of STIM1. Consistent with a role of the store-operated pathway in glucagon secretion, this effect was maximal at the low glucose concentrations that inhibit glucagon release, whereas considerably higher concentrations were required in β-cells. Adrenaline induced STIM1 translocation to the PM in α-cells and the reverse process in β-cells, partially reflecting the opposite effects of adrenaline on cAMP in the two cell types. However, cAMP-induced STIM1 aggregates did not co-cluster with Orai1 or activate SOCE, indicating that STIM1 translocation can occur independently of Orai1 clustering and SOCE.
  •  
4.
  • Xie, Beichen, et al. (författare)
  • The endoplasmic reticulum-plasma membrane tethering protein TMEM24 is a regulator of cellular Ca2+ homeostasis
  • 2022
  • Ingår i: Journal of Cell Science. - : The Company of Biologists. - 0021-9533 .- 1477-9137. ; 135:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Endoplasmic reticulum (ER)-plasma membrane (PM) contacts are sites of lipid exchange and Ca2+ transport, and both lipid transport proteins and Ca2+ channels specifically accumulate at these locations. In pancreatic beta-cells, both lipid and Ca2+ signaling are essential for insulin secretion. The recently characterized lipid transfer protein TMEM24 (also known as C2CD2L) dynamically localizes to ER-PM contact sites and provides phosphatidylinositol, a precursor of phosphatidylinositol-4-phosphate [PI(4)P] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P-2], to the PM. beta-cells lacking TMEM24 exhibit markedly suppressed glucose-induced Ca2+ oscillations and insulin secretion, but the underlying mechanism is not known. We now show that TMEM24 onlyweakly interacts with the PM, and dissociates in response to both diacylglycerol and nanomolar elevations of cytosolic Ca2+. Loss of TMEM24 results in hyper-accumulation of Ca2+ in the ER and in excess Ca2+ entry into mitochondria, with resulting impairment in glucose-stimulated ATP production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy