SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gilthorpe Jonathan Docent) "

Sökning: WFRF:(Gilthorpe Jonathan Docent)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergman, Joakim, 1989- (författare)
  • Studies of the Biology of Intrathecal Treatment in Progressive MS
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Multiple Sclerosis (MS) is a chronic, inflammatory, autoimmune disease, affecting the central nervous system (CNS). About 85% of afflicted present with a relapsing-remitting form of the disease (RRMS), for which a breakthrough in treatment was made in 2008 with rituximab, an antibody directed towards CD20, a surface antigen on B-cells. These findings also contributed to cementing the importance of the B-cell’s role in MS pathophysiology. However, MS also exist as a progressive phenotype, affecting most MS patients either from onset or after a transition from RRMS, and for progressive MS the same treatment effect of anti-CD20 has not been observed. Still, studies have found follicle-like structures containing B-cells in meninges and subarachnoid space of the cortex in progressive MS brains, supporting the involvement of B-cells. Evidence also support the existence of a chronic, low-grade inflammatory process compartmentalised within the CNS that correlates with the progressive phase of MS, which may present a treatment barrier towards anti-CD20. Peripherally administrated therapeutic antibodies cross the intact blood-brain barrier with low efficiency with only 0.1-0.5% of the plasma concentration occurring in the cerebrospinal fluid (CSF). Intrathecal (IT) administration circumvents the blood-brain barrier, presenting an opportunity to better target the CNS B-cells.Aims: To evaluate the safety and feasibility of intrathecal anti-CD20 therapy with rituximab in progressive MS, its effect on disease progression through clinical parameters, and impact on biomarkers in CSF. Furthermore, this thesis aimed to evaluate the effect on biomarkers representative of cell injury related to insertion of a ventricular catheter for drug administration and to examine the interstitial milieu in the brain through microdialysis (MD).Methods: The thesis is based on the open-label, phase IIb, multicentre clinical trial Intrathecal Treatment Trial in Progressive Multiple Sclerosis (ITT-PMS; EudraCT 2008-002626-11), in which 23 participants received IT treatment with rituximab, and the extended follow-up study, ITT-PMS extension (EudraCT 2012-000721-53). All participants received a ventricular catheter and an Ommaya reservoir for drug administration through a neurosurgical procedure, and 10 participants received a MD catheter in parallel to the ventricular catheter for 10 days. The treatment effect was evaluated by regular clinical evaluations and analyses of CSF. The clinical outcome was evaluated through walking and upper-limb function tests, and by clinical evaluation scales. Levels of selected CSF biomarkers were analysed from the same time-points as the clinical evaluations.Results: After the completion of the extension trial, one clinical parameter (cognitive performance) showed improvement but could most likely be explained by a learning effect. Worsening of walking speed was observed, while the remaining clinical parameters showed no change. Two severe adverse events occurred in the form of low-virulent bacterial meningitis caused by Propionibacterium, but both were treated effectively with antibiotics without residual symptoms. A ‘spike’ was noticed in the level of lumbar CSF neurofilament light (NFL) following surgery but returned to pre-surgery baseline within 6-12 months. No change was observed for any of the other lumbar CSF biomarkers. No meaningful correlation of protein levels was observed when comparing MD samples, ventricular CSF, and lumbar CSF.Conclusions: Intrathecal treatment through intraventricular administration was well tolerated but not without risks. A continued progression was observed in gait impairment. The insertion of the ventricular catheter caused white matter injury, measured through an increase in NFL in lumbar CSF, in direct association with the surgical procedure. No impact was observed on other CSF biomarkers. There was a poor correlation between different CNS compartments regarding protein levels, arguing for caution in drawing conclusions about brain pathophysiology from lumbar CSF samples.
  •  
2.
  • Muthukrishnan, Uma, 1984- (författare)
  • The release of histone proteins from cells via extracellular vesicles
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Histones are chromatin-associated proteins localized to the nucleus. However, extracellular histones are present in biofluids from healthy individuals and become elevated under disease conditions, such as neurodegeneration and cancer. Hence, extracellular histones may have important biological functions in healthy and diseased states, which are not understood. Histones have been reported in the proteomes of extracellular vesicles (EVs), including microvesicles and exosomes. The main aim of this thesis was to determine whether or not extracellular histones are secreted via EVs/exosomes.In an initial study (Paper I), I optimized methods for human embryonic kidney (HEK293) cell culture, transfection and protein detection using western blotting.In the main study (Paper II), I used oligodendrocyte cell lines (rat OLN-93 and mouse Oli-neu) to investigate the localization of histones to EVs. Western blotting of EVs purified from OLN-93 cell-conditioned media confirmed the presence of linker and core histones in them. Immunolocalization and transmission electron microscopy confirmed that histones are localized to EVs, as well as intraluminal vesicles (ILVs) within multivesicular bodies (MVBs). This suggests that histones are secreted via the MVB/exosome pathway.Localization of histones in EVs was investigated by biochemical/proteolytic degradation and purification followed by western blotting. Surprisingly, histones were associated with the membrane but not the luminal fraction. Overexpression of tagged histones in HEK293 cells confirmed their conserved, membrane localization. OLN-93 cell EVs contained both double stranded and single stranded DNA but nuclease and protease digestion showed that the association of histones and DNA with EVs was not interdependent.The abundance of histones in EVs was not affected by differentiation in Oli-neu cells. However, histone release was upregulated as an early response to cellular stress in OLN-93 cells and occurred before the release of markers of stress including heat shock proteins. Interestingly, a notable upregulation in secretion of small diameter (50-100 nm) EVs was observed following heat stress, suggesting that a sub-population of vesicles may be involved specifically in histone secretion in response to stress. Proteomic analyses identified the downregulation of endosomal sorting complex required for transport (ESCRT) as a possible mechanism underlying increased histone secretion.In Paper III, I developed methods to quantify extracellular histone proteins in human ascites samples from ovarian cancer patients. In summary, we show for the first time that membrane-associated histones are secreted via the MVB/exosome pathway. We demonstrate a novel pathway for extracellular histone release that may have a role in both health and disease. 
  •  
3.
  • Forsgren, Elin, 1987- (författare)
  • Using patient-derived cell models to investigate the role of misfolded SOD1 in ALS
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Protein misfolding and aggregation underlie several neurodegenerative proteinopathies including amyotrophic lateral sclerosis (ALS). Superoxide dismutase 1 (SOD1) was the first gene found to be associated with familial ALS. Overexpression of human mutant or wild type SOD1 in transgenic mouse models induces motor neuron (MN) degeneration and an ALS-like phenotype. SOD1 mutations, leading to the destabilization of the SOD1 protein is associated with ALS pathogenesis. However, how misfolded SOD1 toxicity specifically affects human MNs is not clear. The aim of this thesis was to develop patient-derived, cellular models of ALS to help understand the pathogenic mechanisms underlying SOD1.To understand which cellular pathways impact on the level of misfolded SOD1 in human cells, we established a model using patient-derived fibroblasts and quantified misfolded SOD1 in relation to disturbances in several ALS-related cellular pathways. Misfolded SOD1 levels did not change following reduction in autophagy, inhibition of the mitochondrial respiratory chain, or induction of endoplasmic reticulum (ER)-stress. However, inhibition of the ubiquitin-proteasome system (UPS) lead to a dramatic increase in misfolded SOD1 levels. Hence, an age-related decline in proteasome activity might underlie the late-life onset that is typically seen in SOD1 ALS.To address whether or not SOD1 misfolding is enhanced in human MNs, we used mixed MN/astrocyte cultures (MNCs) generated in vitro from patient-specific induced pluripotent stem cells (iPSCs). Levels of soluble misfolded SOD1 were increased in MNCs as well as in pure iPSC-derived astrocytes compared to other cell types, including sensory neuron cultures. Interestingly, this was the case for both mutant and wild type human SOD1, although the increase was enhanced in SOD1 FALS MNCs. Misfolded SOD1 was also found to exist in the same form as in mouse SOD1 overexpression models and was identified as a substrate for 20S proteasome degradation. Hence, the vulnerability of motor areas to ALS could be explained by increased SOD1 misfolding, specifically in MNs and astrocytes.To investigate factors that might promote SOD1 misfolding, we focussed on the stability of SOD1 mediated by a crucial, stabilizing C57-C146 disulphide bond and its redox status. Formation of disulphide bond is dependent on oxidation by O2 and catalysed by CCS. To investigate whether low O2 tension affects the stability of SOD1 in vitro we cultured fibroblasts and iPSC-derived MNCs under different oxygen tensions. Low oxygen tension promoted disulphide-reduction, SOD1 misfolding and aggregation. This response was much greater in MNCs compared to fibroblasts, suggesting that MNs may be especially sensitive to low oxygen tension and areas with low oxygen supply could serve as foci for ALS initiation.SOD1 truncation mutations often lack C146, and cannot adopt a native fold and are rapidly degraded. We characterized soluble misfolded and aggregated SOD1 in patient-derived cells carrying a novel SOD1 D96Mfs*8 mutation as well as in cells fom an unaffected mutation carrier. The truncated protein has a C-terminal fusion of seven non-native amino acids and was found to be extremely prone to aggregation in vitro. Since not all mutation carriers develop ALS, our results suggested this novel mutation is associated with reduced penetrance.In summary, patient derived cells are useful models to study factors affecting SOD1 misfolded and aggregation. We show for the first time that misfolding of a disordered and disease associated protein is enhanced in disease-related cell types. Showing that misfolded SOD1 exists in human cells in the same form as in transgenic mouse models strengthens the translatability of results obtained in the two species. Our results demonstrate disulphide-reduction and misfolding/aggregation of SOD1 and suggest that 20S proteasome could be an important therapeutic target for early stages of disease. This model provides a great opportunity to study pathogenic mechanisms of both familial and sporadic ALS in patient-derived models of ALS. 
  •  
4.
  • Rahmani, Shapour, 1975- (författare)
  • Studies on lipid transport and extracellular vesicle production in Caenorhabditis elegans ciliated neurons
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The cilium is a protrusion of cell membrane. Both the protein and lipid contents of cilia are different from those of other parts of the cell membrane. While the transport of proteins into and out of cilia has been intensively studied, much less is known about how the lipid content of ciliary membranes is regulated. TAT-6 is a P4-family ATPase that is expressed in C. elegans ciliated neurons whose endings are exposed to the environment. To study the function of TAT-6 and that other translocases in lipid transport in C. elegans ciliated neurons, I developed a technique to allow labelling of cilia with lipids. For the first time I used fusogenic liposomes to study the roles of all the TAT proteins in this organism in maintaining the lipid asymmetry in this organelle. Assessment the cilia with these liposomes showed that TAT-5 and TAT-1 translocase activities promote the transport of phosphatidylethanolamine (PE) and phosphatidylserine (PS) respectively and TAT-6 has an overlapping function in transporting both phospholipds. In C. elegans males, certain ciliated neurons release extracellular vesicles (EVs). The cilium is a site of EV biogenesis and shedding. I found that ciliated neurons in tat-6 mutant males produced significantly fewer EVs than those in wild type. tat-1, tat-5 and pad-1 mutants, however, produced far more EVs than those in wild type. PPK-3, CUP-5 and LMP-1 are proteins necessary for endolysosomal trafficking and lysosomes biogenesis, a process in which TAT-1 has previously been shown to function in C. elegans intestinal cells. I found that, like tat-1 mutants, ppk-3, lmp-1 and cup-5 mutant males release significantly greater numbers of EVs from cilia compared with wild-type. I found that increasing and decreasing the cGMP signaling cause defects in the response and turning behavior in male C. elegans respectively. Exposing wild-type males to high levels of 8-Bromoguanosine 3′,5′-cyclic monophosphate strongly reduced response behavior. Males mutant for odr-3, which encodes a G protein were defective in response. Overall my investigations indicate that the regulation of lipid asymmetry and phospholipid transport is required for proper cilia function in C. elegans, that intercellular trafficking and lipid composition have important roles in EVs biogenesis, and that different TAT proteins can affect the size and number of EVs produced. I also showed that in male animals, cGMP is one of the mediators in mating transduction signal and that a high level of cGMP inhibits mating response behavior in male C. elegans. 
  •  
5.
  • Vågberg, Mattias, 1985- (författare)
  • Brain parenchymal fraction in healthy individuals and in clinical follow-up of multiple sclerosis
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background Multiple sclerosis (MS) is an autoimmune disease characterised by inflammatory damage to the central nervous system (CNS). Accumulated CNS injury can be quantified as brain atrophy, definable as a reduction in brain parenchymal fraction (BPF). BPF correlate with disability in MS and is used routinely as an endpoint in clinical trials. In 2009/2010, a new MS clinical care program, that includes follow-up of BPF, was introduced at Umeå University Hospital (NUS). Levels of neurofilament light polypetide (NFL) and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF) are markers of axonal and astrocytic injury, respectively, and also potential surrogate biomarkers for BPF decline. The goals of this thesis were to establish age-adjusted values of BPF in healthy individuals and to relate these to the BPF values from individuals with MS as well as to the levels of NFL and GFAP in CSF. Another goal was to investigate if expanded disability status scale (EDSS)-worsening could be predicted in a clinical MS cohort and if BPF measurements could contribute to such predictions. Methods A group of 111 healthy individuals volunteered to participate in the studies. A total of 106 of these underwent MRI with BPF measurements, 53 underwent lumbar puncture (LP) with measurement of NFL and GFAP and 48 underwent both MRI and LP. Three different automatic and one manual method were utilised to determine BPF. A literature search on BPF in healthy individuals was performed for the purpose of a systematic review. For studying disability progression in MS, all individuals with MS followed at NUS and included in the Swedish MS registry were included if they had matched data on BPF, EDSS and lesion load as part of clinical follow-up (n=278). Results BPF as well as NFL and GFAP levels in CSF were all associated with age. NFL was associated with BPF and GFAP, but only the association with GFAP was retained when adjusting for age. Significant differences were found between different methods for BPF determination. In the MS population, BPF was associated with EDSS. Only progressive disease course could predict EDSS worsening. Conclusion The data on BPF and levels of NFL and GFAP in CSF of healthy individuals can aid in the interpretation of these variables in the setting of MS. Knowledge on differences in BPF data from different methods for BPF determination can be useful in comparing data across studies, but also highlights the need for a commonly accepted gold standard. The correlation between GFAP and NFL levels in CSF may indicate an association between glial and axonal turnover that is independent of the aging effect on the brain. However, the low number of volunteers for LP precluded clear conclusions. An association between BPF and EDSS was seen in the MS group. The ability to predict EDSS worsening in the clinical MS cohort was limited.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy