SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gingras Peter) "

Sökning: WFRF:(Gingras Peter)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brinson, Robert G., et al. (författare)
  • Enabling adoption of 2D-NMR for the higher order structure assessment of monoclonal antibody therapeutics
  • 2019
  • Ingår i: mAbs. - : Informa UK Limited. - 1942-0862 .- 1942-0870. ; 11:1, s. 94-105
  • Tidskriftsartikel (refereegranskat)abstract
    • The increased interest in using monoclonal antibodies (mAbs) as a platform for biopharmaceuticals has led to the need for new analytical techniques that can precisely assess physicochemical properties of these large and very complex drugs for the purpose of correctly identifying quality attributes (QA). One QA, higher order structure (HOS), is unique to biopharmaceuticals and essential for establishing consistency in biopharmaceutical manufacturing, detecting process-related variations from manufacturing changes and establishing comparability between biologic products. To address this measurement challenge, two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) methods were introduced that allow for the precise atomic-level comparison of the HOS between two proteins, including mAbs. Here, an inter-laboratory comparison involving 26 industrial, government and academic laboratories worldwide was performed as a benchmark using the NISTmAb, from the National Institute of Standards and Technology (NIST), to facilitate the translation of the 2D-NMR method into routine use for biopharmaceutical product development. Two-dimensional H-1,N-15 and H-1,C-13 NMR spectra were acquired with harmonized experimental protocols on the unlabeled Fab domain and a uniformly enriched-N-15, 20%-C-13-enriched system suitability sample derived from the NISTmAb. Chemometric analyses from over 400 spectral maps acquired on 39 different NMR spectrometers ranging from 500 MHz to 900 MHz demonstrate spectral fingerprints that are fit-for-purpose for the assessment of HOS. The 2D-NMR method is shown to provide the measurement reliability needed to move the technique from an emerging technology to a harmonized, routine measurement that can be generally applied with great confidence to high precision assessments of the HOS of mAb-based biotherapeutics.
  •  
2.
  • Sallent, Ignacio, et al. (författare)
  • The Few Who Made It : Commercially and Clinically Successful Innovative Bone Grafts
  • 2020
  • Ingår i: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media SA. - 2296-4185. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • Bone reconstruction techniques are mainly based on the use of tissue grafts and artificial scaffolds. The former presents well-known limitations, such as restricted graft availability and donor site morbidity, while the latter commonly results in poor graft integration and fixation in the bone, which leads to the unbalanced distribution of loads, impaired bone formation, increased pain perception, and risk of fracture, ultimately leading to recurrent surgeries. In the past decade, research efforts have been focused on the development of innovative bone substitutes that not only provide immediate mechanical support, but also ensure appropriate graft anchoring by, for example, promotingde novobone tissue formation. From the countless studies that aimed in this direction, only few have made the big jump from the benchtop to the bedside, whilst most have perished along the challenging path of clinical translation. Herein, we describe some clinically successful cases of bone device development, including biological glues, stem cell-seeded scaffolds, and gene-functionalized bone substitutes. We also discuss the ventures that these technologies went through, the hindrances they faced and the common grounds among them, which might have been key for their success. The ultimate objective of this perspective article is to highlight the important aspects of the clinical translation of an innovative idea in the field of bone grafting, with the aim of commercially and clinically informing new research approaches in the sector.
  •  
3.
  • Tobias, Deirdre K, et al. (författare)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • Ingår i: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
4.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy