SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Giordano Fabrizio) "

Sökning: WFRF:(Giordano Fabrizio)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cao, Yiming, et al. (författare)
  • 11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid-state dye-sensitized solar cells currently suffer from issues such as inadequate nanopore filling, low conductivity and crystallization of hole-transport materials infiltrated in the mesoscopic TiO2 scaffolds, leading to low performances. Here we report a record 11% stable solid-state dye-sensitized solar cell under standard air mass 1.5 global using a hole-transport material composed of a blend of [Cu (4,4',6,6'-tetramethyl-2,2'-bipyridine)2(bis(trifluoromethylsulfonyl)imide)2 and [Cu (4,4',6,6'-tetramethyl-2,2'-bipyridine)2](bis(trifluoromethylsulfonyl)imide). The amorphous Cu(II/I) conductors that conduct holes by rapid hopping infiltrated in a 6.5 mm-thick mesoscopic TiO2 scaffold are crucial for achieving such high efficiency. Using time-resolved laser photolysis, we determine the time constants for electron injection from the photoexcited sensitizers Y123 into the TiO2 and regeneration of the Y123 by Cu(I) to be 25 ps and 3.2 μs, respectively. Our work will foster the development of low-cost solid-state photovoltaic based on transition metal complexes as hole conductors.
  •  
2.
  • De Angelis, A., et al. (författare)
  • Science with e-ASTROGAM A space mission for MeV-GeV gamma-ray astrophysics
  • 2018
  • Ingår i: Journal of High Energy Astrophysics. - : Elsevier. - 2214-4048 .- 2214-4056. ; 19, s. 1-106
  • Tidskriftsartikel (refereegranskat)abstract
    • e-ASTROGAM ('enhanced ASTROGAM') is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV - the lower energy limit can be pushed to energies as low as 150 keV for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and LISA.
  •  
3.
  • Freitag, Marina, et al. (författare)
  • Copper Phenanthroline as a Fast and High-Performance Redox Mediator for Dye-Sensitized Solar Cells
  • 2016
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 120:18, s. 9595-9603
  • Tidskriftsartikel (refereegranskat)abstract
    • The most commonly used redox mediators in dye-sensitized solar cells (DSCs), iodide/triiodide and cobalt trisbipyridine ([Co(bpy)(3)](2+/3+)), were successfully replaced by bis (2,9-dimethy1-1,10-phenanthroline) copp er (I/H) ([Cu(dmp)(2)](1+/2+)). The use of the copper complex based electrolyte led to an exceptionally high photovoltaic performance of 8.3% for LEG4-sensitized TiO2 solar cells, with a remarkably high open-circuit potential of above 1.0 V at 1000 W m(-2) under AM1.5G conditions. The copper complex based redox electrolyte has higher diffusion coefficients and is considerably faster in dye regeneration than comparable cobalt trisbipyridine based electrolytes. A driving force for dye regeneration of only 0.2 eV is sufficient to obtain unit yield, pointing to new possibilities for improvement in DSC efficiencies. The interaction of the excited dye with components of the electrolyte was monitored using steady-state emission measurements and time-correlated single-photon counting (TC-SPC). Our results indicate bimolecular reductive quenching of the excited LEG4 dye by the [Cu(dmp)(2)](2+) complex through a dynamic mechanism. Excited-state dye molecules can readily undergo bimolecular electron transfer with a suitable donor molecule. In DSCs this process can occur when the excited dye is unable to inject electrons into the TiO2. With a high electrolyte concentration the excited dye can be intercepted with an electron from the electrolyte resulting in the reduced state of the dye. Quenching of the reduced dye by the electrolyte competes with electron injection and results in a lower photocurrent. Quenching of excited LEG4 by complexes of [Cu(dmp)(2)](+), [Co(bpy)(3)](2+), and [Co(bpy)(3)](3+) followed a static mechanism, due ground-state dye-quencher binding. Inhibition of unwanted quenching processes by structural modifications may open ways to further increase the overall efficiency.
  •  
4.
  • Freitag, Marina, et al. (författare)
  • Dye-sensitized solar cells for efficient power generation under ambient lighting
  • 2017
  • Ingår i: Nature Photonics. - : NATURE PUBLISHING GROUP. - 1749-4885 .- 1749-4893. ; 11:6, s. 372-
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar cells that operate efficiently under indoor lighting are of great practical interest as they can serve as electric power sources for portable electronics and devices for wireless sensor networks or the Internet of Things. Here, we demonstrate a dye-sensitized solar cell (DSC) that achieves very high power-conversion efficiencies (PCEs) under ambient light conditions. Our photosystem combines two judiciously designed sensitizers, coded D35 and XY1, with the copper complex Cu(II/I)(tmby) as a redox shuttle (tmby, 4,4', 6,6'-tetramethyl-2,2'-bipyridine), and features a high open-circuit photovoltage of 1.1 V. The DSC achieves an external quantum efficiency for photocurrent generation that exceeds 90% across the whole visible domain from 400 to 650 nm, and achieves power outputs of 15.6 and 88.5 mu W cm(-2) at 200 and 1,000 lux, respectively, under illumination from a model Osram 930 warm-white fluorescent light tube. This translates into a PCE of 28.9%.
  •  
5.
  • Saygili, Yasemin, et al. (författare)
  • Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage
  • 2016
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 138:45, s. 15087-15096
  • Tidskriftsartikel (refereegranskat)abstract
    • Redox mediators play a major role determining the photocurrent and the photovoltage in dye-sensitized solar cells (DSCs). To maintain the photocurrent, the reduction of oxidized dye by the redox mediator should be significantly faster than the electron back transfer between TiO2 and the oxidized dye. The driving force for dye regeneration with the redox mediator should be sufficiently low to provide high photovoltages. With the introduction of our new copper complexes as promising redox mediators in DSCs both criteria are satisfied to enhance power conversion efficiencies. In this study, two copper bipyridyl complexes, Cu-(II/I)(dmby)(2)TFSI2/1 (0.97 V vs SHE, dmby = 6,6'-dimethyl-2,2'-bipyridine) and Cu-(II/I)(tmby)(2)TFSI2/1 (0.87 V vs SHE, tmby = 4,4',6,6'-tetramethyl-2,2'-bipyridine), are presented as new redox couples for DSCs. They are compared to previously reported Cu-(II/I)(dmp)(2)TFSI2/1 (0.93 V vs SHE, dmp = bis(2,9-dimethyl-1,10-phenanthroline). Due to the small reorganization energy between Cu(I) and Cu(II) species, these copper complexes can sufficiently regenerate the oxidized dye molecules with close to unity yield at driving force potentials as low as 0.1 V. The high photovoltages of over 1.0 V were achieved by the series of copper complex based redox mediators without compromising photocurrent densities. Despite the small driving forces for dye regeneration, fast and efficient dye regeneration (2-3 mu s) was observed for both complexes. As another advantage, the electron back transfer (recombination) rates were slower with Cu-(II/I)(tmby)(2)TFSI2/1 as evidenced by longer lifetimes. The solar-to-electrical power conversion efficiencies for [Cu(tmby)(2)](2+/1+), [Cu(dmby)(2)](2+/1+) , and [Cu(dmp)(2)](2+/1+) based electrolytes were 10.3%, 10.0%, and 10.3%, respectively, using the organic Y123 dye under 1000 W m(-2) AM1.5G illumination. The high photovoltaic performance of Cu-based redox mediators underlines the significant potential of the new redox mediators and points to a new research and development direction for DSCs.
  •  
6.
  • Saygili, Yasemin, et al. (författare)
  • Effect of Coordination Sphere Geometry of Copper Redox Mediators on Regeneration and Recombination Behavior in Dye-Sensitized Solar Cell Applications
  • 2018
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 1:9, s. 4950-4962
  • Tidskriftsartikel (refereegranskat)abstract
    • The recombination of injected electrons with oxidized redox species and regeneration behavior of copper redox mediators are investigated for four copper complexes, [Cu(dmby)(2)](2+/1+) (dmby = 6,6'-dimethyl-2,2'-bipyridine), [Cu(tmby)(2)](2+/1+) (tmby = 4,4',6,6'- tetramethyl-2,2'-bipyridine), [Cu(eto)(2)](2+/1+) (eto = 4-ethoxy-6,6'-dimethyl-2,2'-bipyridine), and [Cu(dmp)(2)](2+/1+) (dmp = bis(2,9-dimethyl-1,10-phenantroline). These complexes were examined in conjunction with the D5, D35, and D45 sensitizers, having various degrees of blocking moieties. The experimental results were further supported by density functional theory calculations, showing that the low reorganization energies, lambda, of tetra-coordinated Cu(I) species (lambda = 0.31-0.34 eV) allow efficient regeneration of the oxidized dye at driving forces down to approximately 0.1 eV. The regeneration electron transfer reaction is in the Marcus normal regime. However, for Cu(II) species, the presence of 4-tertbutylpyridine (TBP) in electrolyte medium results in penta-coordinated complexes with altered charge recombination kinetics (lambda = 1.23-1.40 eV). These higher reorganization energies lead to charge recombination in the Marcus normal regime instead of the Marcus inverted regime that could have been expected from the large driving force for electrons in the conduction band of TiO2 to react with Cu(II). Nevertheless, the recombination resistance and electron lifetime values were higher for the copper redox species compared to the reference cobalt redox mediator. The DSC devices employing D35 dye with [Cu(dmp)(2)](2+/1+) reached a record value for the open circuit voltage of 1.14 V without compromising the short circuit current density value. Even with the D5 dye, which lacks recombination preventing steric units, we reached 7.5% efficiency by employing [Cu(dmp)(2)](2+/1+) and [Cu(dmby)(2)](2+/1+) at AM 1.5G full sun illumination with open circuit voltage values as high as 1.13 V.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy