SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Girardin Cécile A J) "

Sökning: WFRF:(Girardin Cécile A J)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Rifai, Sami W., et al. (författare)
  • ENSO Drives interannual variation of forest woody growth across the tropics
  • 2018
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 1471-2970 .- 0962-8436. ; 373:1760
  • Tidskriftsartikel (refereegranskat)abstract
    • Meteorological extreme events such as El Niño events are expected to affect tropical forest net primary production (NPP) and woody growth, but there has been no large-scale empirical validation of this expectation. We collected a large high-temporal resolution dataset (for 1-13 years depending upon location) of more than 172 000 stem growth measurements using dendrometer bands from across 14 regions spanning Amazonia, Africa and Borneo in order to test how much month-to-month variation in stand-level woody growth of adult tree stems (NPPstem) can be explained by seasonal variation and interannual meteorological anomalies. A key finding is that woody growth responds differently to meteorological variation between tropical forests with a dry season (where monthly rainfall is less than 100 mm), and aseasonal wet forests lacking a consistent dry season. In seasonal tropical forests, a high degree of variation in woody growth can be predicted from seasonal variation in temperature, vapour pressure deficit, in addition to anomalies of soil water deficit and shortwave radiation. The variation of aseasonal wet forest woody growth is best predicted by the anomalies of vapour pressure deficit, water deficit and shortwave radiation. In total, we predict the total live woody production of the global tropical forest biome to be 2.16 Pg C yr-1, with an interannual range 1.96-2.26 Pg C yr-1 between 1996-2016, and with the sharpest declines during the strong El Niño events of 1997/8 and 2015/6. There is high geographical variation in hotspots of El Niño-associated impacts, with weak impacts in Africa, and strongly negative impacts in parts of Southeast Asia and extensive regions across central and eastern Amazonia. Overall, there is high correlation (r = -0.75) between the annual anomaly of tropical forest woody growth and the annual mean of the El Niño 3.4 index, driven mainly by strong correlations with anomalies of soil water deficit, vapour pressure deficit and shortwave radiation.This article is part of the discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.
  •  
3.
  • Huaraca Huasco, Walter, et al. (författare)
  • Fine root dynamics across pantropical rainforest ecosystems
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:15, s. 3657-3680
  • Tidskriftsartikel (refereegranskat)abstract
    • Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
  •  
4.
  • Malhi, Yadvinder, et al. (författare)
  • The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 21:6, s. 2283-2295
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling.
  •  
5.
  • Malhi, Yadvinder, et al. (författare)
  • The variation of productivity and its allocation along a tropical elevation gradient : A whole carbon budget perspective
  • 2017
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 214:3, s. 1019-1032
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary: Why do forest productivity and biomass decline with elevation? To address this question, research to date generally has focused on correlative approaches describing changes in woody growth and biomass with elevation. We present a novel, mechanistic approach to this question by quantifying the autotrophic carbon budget in 16 forest plots along a 3300 m elevation transect in Peru. Low growth rates at high elevations appear primarily driven by low gross primary productivity (GPP), with little shift in either carbon use efficiency (CUE) or allocation of net primary productivity (NPP) between wood, fine roots and canopy. The lack of trend in CUE implies that the proportion of photosynthate allocated to autotrophic respiration is not sensitive to temperature. Rather than a gradual linear decline in productivity, there is some limited but nonconclusive evidence of a sharp transition in NPP between submontane and montane forests, which may be caused by cloud immersion effects within the cloud forest zone. Leaf-level photosynthetic parameters do not decline with elevation, implying that nutrient limitation does not restrict photosynthesis at high elevations. Our data demonstrate the potential of whole carbon budget perspectives to provide a deeper understanding of controls on ecosystem functioning and carbon cycling.
  •  
6.
  • Martin, Maria A., et al. (författare)
  • Ten new insights in climate science 2021 : a horizon scan
  • 2021
  • Ingår i: Global Sustainability. - : Cambridge University Press (CUP). - 2059-4798. ; 4, s. 1-20
  • Forskningsöversikt (refereegranskat)abstract
    • Non-technical summary: We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding about the remaining options to achieve the Paris Agreement goals, through overcoming political barriers to carbon pricing, taking into account non-CO2 factors, a well-designed implementation of demand-side and nature-based solutions, resilience building of ecosystems and the recognition that climate change mitigation costs can be justified by benefits to the health of humans and nature alone. We consider new insights about what to expect if we fail to include a new dimension of fire extremes and the prospect of cascading climate tipping elements.Technical summary: A synthesis is made of 10 topics within climate research, where there have been significant advances since January 2020. The insights are based on input from an international open call with broad disciplinary scope. Findings include: (1) the options to still keep global warming below 1.5 °C; (2) the impact of non-CO2 factors in global warming; (3) a new dimension of fire extremes forced by climate change; (4) the increasing pressure on interconnected climate tipping elements; (5) the dimensions of climate justice; (6) political challenges impeding the effectiveness of carbon pricing; (7) demand-side solutions as vehicles of climate mitigation; (8) the potentials and caveats of nature-based solutions; (9) how building resilience of marine ecosystems is possible; and (10) that the costs of climate change mitigation policies can be more than justified by the benefits to the health of humans and nature.Social media summary: How do we limit global warming to 1.5 °C and why is it crucial? See highlights of latest climate science.
  •  
7.
  • Chausson, Alexandre, et al. (författare)
  • Mapping the effectiveness of nature-based solutions for climate change adaptation
  • 2020
  • Ingår i: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 26:11, s. 6134-6155
  • Tidskriftsartikel (refereegranskat)abstract
    • Nature-based solutions (NbS) to climate change currently have considerable political traction. However, national intentions to deploy NbS have yet to be fully translated into evidence-based targets and action on the ground. To enable NbS policy and practice to be better informed by science, we produced the first global systematic map of evidence on the effectiveness of nature-based interventions for addressing the impacts of climate change and hydrometeorological hazards on people. Most of the interventions in natural or semi-natural ecosystems were reported to have ameliorated adverse climate impacts. Conversely, interventions involving created ecosystems (e.g., afforestation) were associated with trade-offs; such studies primarily reported reduced soil erosion or increased vegetation cover but lower water availability, although this evidence was geographically restricted. Overall, studies reported more synergies than trade-offs between reduced climate impacts and broader ecological, social, and climate change mitigation outcomes. In addition, nature-based interventions were most often shown to be as effective or more so than alternative interventions for addressing climate impacts. However, there were substantial gaps in the evidence base. Notably, there were few studies of the cost-effectiveness of interventions compared to alternatives and few integrated assessments considering broader social and ecological outcomes. There was also a bias in evidence toward the Global North, despite communities in the Global South being generally more vulnerable to climate impacts. To build resilience to climate change worldwide, it is imperative that we protect and harness the benefits that nature can provide, which can only be done effectively if informed by a strengthened evidence base.
  •  
8.
  • Doughty, Christopher E., et al. (författare)
  • What controls variation in carbon use efficiency among Amazonian tropical forests?
  • 2018
  • Ingår i: Biotropica. - : Wiley. - 0006-3606. ; 50:1, s. 16-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Why do some forests produce biomass more efficiently than others? Variations in Carbon Use Efficiency (CUE: total Net Primary Production (NPP)/ Gross Primary Production (GPP)) may be due to changes in wood residence time (Biomass/NPPwood), temperature, or soil nutrient status. We tested these hypotheses in 14, one ha plots across Amazonian and Andean forests where we measured most key components of net primary production (NPP: wood, fine roots, and leaves) and autotrophic respiration (Ra; wood, rhizosphere, and leaf respiration). We found that lower fertility sites were less efficient at producing biomass and had higher rhizosphere respiration, indicating increased carbon allocation to belowground components. We then compared wood respiration to wood growth and rhizosphere respiration to fine root growth and found that forests with residence times <40 yrs had significantly lower maintenance respiration for both wood and fine roots than forests with residence times >40 yrs. A comparison of rhizosphere respiration to fine root growth showed that rhizosphere growth respiration was significantly greater at low fertility sites. Overall, we found that Amazonian forests produce biomass less efficiently in stands with residence times >40 yrs and in stands with lower fertility, but changes to long-term mean annual temperatures do not impact CUE.
  •  
9.
  • Girardin, Cécile A J, et al. (författare)
  • Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 30:5, s. 700-715
  • Tidskriftsartikel (refereegranskat)abstract
    • The seasonality of solar irradiance and precipitation may regulate seasonal variations in tropical forests carbon cycling. Controversy remains over their importance as drivers of seasonal dynamics of net primary productivity in tropical forests. We use ground data from nine lowland Amazonian forest plots collected over 3 years to quantify the monthly primary productivity (NPP) of leaves, reproductive material, woody material, and fine roots over an annual cycle. We distinguish between forests that do not experience substantial seasonal moisture stress (“humid sites”) and forests that experience a stronger dry season (“dry sites”). We find that forests from both precipitation regimes maximize leaf NPP over the drier season, with a peak in production in August at both humid (mean 0.39 ± 0.03 Mg C ha−1 month−1 in July, n = 4) and dry sites (mean 0.49 ± 0.03 Mg C ha−1 month−1 in September, n = 8). We identify two distinct seasonal carbon allocation patterns (the allocation of NPP to a specific organ such as wood leaves or fine roots divided by total NPP). The forests monitored in the present study show evidence of either (i) constant allocation to roots and a seasonal trade-off between leaf and woody material or (ii) constant allocation to wood and a seasonal trade-off between roots and leaves. Finally, we find strong evidence of synchronized flowering at the end of the dry season in both precipitation regimes. Flower production reaches a maximum of 0.047 ± 0.013 and 0.031 ± 0.004 Mg C ha−1 month−1 in November, in humid and dry sites, respectively. Fruitfall production was staggered throughout the year, probably reflecting the high variation in varying times to development and loss of fruit among species.
  •  
10.
  • Huaraca Huasco, Walter, et al. (författare)
  • Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes
  • 2014
  • Ingår i: Plant Ecology & Diversity. - : Informa UK Limited. - 1755-0874 .- 1755-1668. ; 7:1-2, s. 125-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Tropical montane cloud forests (TMCF) are unique ecosystems with high biodiversity and large carbon reservoirs. To date there have been limited descriptions of the carbon cycle of TMCF. Aims: We present results on the production, allocation and cycling of carbon for two mid-elevation (1500-1750 m) tropical montane cloud forest plots in San Pedro, Kosnipata Valley, Peru. Methods: We repeatedly recorded the components of net primary productivity (NPP) using biometric measurements, and autotrophic (R-a) and heterotrophic (Rh) respiration, using gas exchange measurements. From these we estimated gross primary productivity (GPP) and carbon use efficiency (CUE) at the plot level. Results: The plot at 1500 m was found very productive, with our results comparable with the most productive lowland Amazonian forests. The plot at 1750 m had significantly lower productivity, possibly because of greater cloud immersion. Both plots had similar patterns of NPP allocation, a substantial seasonality in NPP components and little seasonality in R-a. Conclusions: These two plots lie within the ecotone between lower and upper montane forests, near the level of the cloud base. Climate change is likely to increase elevation of the cloud base, resulting in shifts in forest functioning. Longer-term surveillance of the carbon cycle at these sites would yield valuable insights into the response of TMCFs to a shifting cloud base.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (9)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (10)
Författare/redaktör
Malhi, Yadvinder (7)
Metcalfe, Daniel B. (4)
Phillips, Oliver L. (3)
Metcalfe, Dan (2)
Adu-Bredu, Stephen (2)
Moore, Sam (2)
visa fler...
Oliveras, Imma (2)
Pihl, Erik (1)
Fisher, Eleanor (1)
Zhang, Yan (1)
Korhonen, Laura (1)
Lindholm, Dan (1)
Vertessy, Beata G. (1)
Wang, Mei (1)
Wang, Xin (1)
Liu, Yang (1)
Kumar, Rakesh (1)
Wang, Dong (1)
Li, Ke (1)
Liu, Ke (1)
Zhang, Yang (1)
Nàgy, Péter (1)
Kominami, Eiki (1)
van der Goot, F. Gis ... (1)
Winkelmann, Ricarda (1)
Chen, Deliang, 1961 (1)
Bonaldo, Paolo (1)
Adams, Christopher M (1)
Minucci, Saverio (1)
Vellenga, Edo (1)
Swärd, Karl (1)
Nilsson, Per (1)
Sterner, Thomas, 195 ... (1)
De Milito, Angelo (1)
Zhang, Jian (1)
Shukla, Deepak (1)
Kågedal, Katarina (1)
Chen, Guoqiang (1)
Liu, Wei (1)
Cheetham, Michael E. (1)
Sigurdson, Christina ... (1)
Clarke, Robert (1)
Zhang, Fan (1)
Gonzalez-Alegre, Ped ... (1)
Jin, Lei (1)
Chen, Qi (1)
Taylor, Mark J. (1)
Romani, Luigina (1)
Wang, Ying (1)
Kumar, Ashok (1)
visa färre...
Lärosäte
Lunds universitet (7)
Umeå universitet (2)
Stockholms universitet (2)
Linköpings universitet (2)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
visa fler...
Nordiska Afrikainstitutet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Lantbruksvetenskap (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy