SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gisder Sebastian) "

Sökning: WFRF:(Gisder Sebastian)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Doublet, Vincent, et al. (författare)
  • Unity in defence : honeybee workers exhibit conserved molecular responses to diverse pathogens
  • 2017
  • Ingår i: BMC Genomics. - : BIOMED CENTRAL LTD. - 1471-2164. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses.Results: We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses.Conclusions: Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.
  •  
2.
  • Radek, Renate, et al. (författare)
  • Morphologic and molecular data help adopting the insect-pathogenic nephridiophagids (Nephridiophagidae) among the early diverging fungal lineages, close to the Chytridiomycota
  • 2017
  • Ingår i: MycoKeys. - : Pensoft Publishers. - 1314-4057 .- 1314-4049. ; 25, s. 31-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Nephridiophagids are poorly known unicellular eukaryotes, previously of uncertain systematic position, that parasitize the Malpighian tubules of insects. Their life cycle includes merogony with multinucleate plasmodia and sporogony leading to small, uninucleate spores. We examined the phylogenetic affiliations of three species of Nephridiophaga, including one new species, Nephridiophaga maderae, from the Madeira cockroach (Leucophaea maderae). In addition to the specific host, the new species differs from those already known by the size of the spores and by the number of spores within the sporogenic plasmodium. The inferred phylogenetic analyses strongly support a placement of the nephridiophagids in the fungal kingdom near its root and with a close, but unresolved, relationship to the chytids (Chytridiomycota). We found evidence for the nephridiophagidean speciation as being strongly coupled to host speciation.
  •  
3.
  • Rodrigues De Miranda, Joachim, et al. (författare)
  • Cold case : The disappearance of Egypt bee virus, a fourth distinct master strain of deformed wing virus linked to honeybee mortality in 1970's Egypt
  • 2022
  • Ingår i: Virology Journal. - : BioMed Central (BMC). - 1743-422X. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy