SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gizzi L.) "

Sökning: WFRF:(Gizzi L.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferrario, M., et al. (författare)
  • IRIDE : Interdisciplinary research infrastructure based on dual electron linacs and lasers
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 740, s. 138-146
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the scientific aims and potentials as well as the preliminary technical design of RUDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. [RIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities.
  •  
2.
  • Walker, Anthony P, et al. (författare)
  • Horizon 2020 EuPRAXIA design study
  • 2017
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 874:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.
  •  
3.
  • Nordlund, Lina Mtwana, et al. (författare)
  • One hundred priority questions for advancing seagrass conservation in Europe
  • 2024
  • Ingår i: PLANTS PEOPLE PLANET. - 2572-2611.
  • Tidskriftsartikel (refereegranskat)abstract
    • Societal Impact StatementSeagrass ecosystems are of fundamental importance to our planet and wellbeing. Seagrasses are marine flowering plants, which engineer ecosystems that provide a multitude of ecosystem services, for example, blue foods and carbon sequestration. Seagrass ecosystems have largely been degraded across much of their global range. There is now increasing interest in the conservation and restoration of these systems, particularly in the context of the climate emergency and the biodiversity crisis. The collation of 100 questions from experts across Europe could, if answered, improve our ability to conserve and restore these systems by facilitating a fundamental shift in the success of such work.SummarySeagrass meadows provide numerous ecosystem services including biodiversity, coastal protection, and carbon sequestration. In Europe, seagrasses can be found in shallow sheltered waters along coastlines, in estuaries & lagoons, and around islands, but their distribution has declined. Factors such as poor water quality, coastal modification, mechanical damage, overfishing, land-sea interactions, climate change and disease have reduced the coverage of Europe's seagrasses necessitating their recovery. Research, monitoring and conservation efforts on seagrass ecosystems in Europe are mostly uncoordinated and biased towards certain species and regions, resulting in inadequate delivery of critical information for their management. Here, we aim to identify the 100 priority questions, that if addressed would strongly advance seagrass monitoring, research and conservation in Europe. Using a Delphi method, researchers, practitioners, and policymakers with seagrass experience from across Europe and with diverse seagrass expertise participated in the process that involved the formulation of research questions, a voting process and an online workshop to identify the final list of the 100 questions. The final list of questions covers areas across nine themes: Biodiversity & Ecology; Ecosystem services; Blue carbon; Fishery support; Drivers, Threats, Resilience & Response; Monitoring & Assessment; Conservation & Restoration; Governance, Policy & Management; and Communication. Answering these questions will fill current knowledge gaps and place European seagrass onto a positive trajectory of recovery. Seagrass ecosystems are of fundamental importance to our planet and wellbeing. Seagrasses are marine flowering plants which engineer ecosystems that provide a multitude of ecosystem services, for example, blue foods and carbon sequestration. Seagrass ecosystems have largely been degraded across much of their global range. There is now increasing interest in the conservation and restoration of these systems, particularly in the context of the climate emergency and the biodiversity crisis. The collation of 100 questions from experts across Europe could, if answered, improve our ability to conserve and restore these systems by facilitating a fundamental shift in the success of such work. image
  •  
4.
  • Sarri, Gianluca, et al. (författare)
  • Dynamics of Self-Generated, Large Amplitude Magnetic Fields Following High-Intensity Laser Matter Interaction
  • 2012
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 109:20, s. 205002-
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of magnetic fields with an amplitude of several tens of megagauss, generated at both sides of a solid target irradiated with a high-intensity (∼1019  W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.
  •  
5.
  • Sarri, Gianluca, et al. (författare)
  • Laser-driven generation of collimated ultra-relativistic positron beams
  • 2013
  • Ingår i: Plasma Physics and Controlled Fusion. - London : Institute of Physics (IOP). - 0741-3335 .- 1361-6587. ; 55:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on recent experimental results concerning the generation of collimated (divergence of the order of a few mrad) ultra-relativistic positron beams using a fully optical system. The positron beams are generated exploiting a quantum-electrodynamic cascade initiated by the propagation of a laser-accelerated, ultra-relativistic electron beam through high-Z solid targets. As long as the target thickness is comparable to or smaller than the radiation length of the material, the divergence of the escaping positron beam is of the order of the inverse of its Lorentz factor. For thicker solid targets the divergence is seen to gradually increase, due to the increased number of fundamental steps in the cascade, but it is still kept of the order of few tens of mrad, depending on the spectral components in the beam. This high degree of collimation will be fundamental for further injection into plasma-wakefield afterburners.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy