SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gkanatsiou Eleni) "

Sökning: WFRF:(Gkanatsiou Eleni)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agholme, Lotta, et al. (författare)
  • Low-dose γ-secretase inhibition increases secretion of Aβ peptides and intracellular oligomeric Aβ.
  • 2017
  • Ingår i: Molecular and cellular neurosciences. - : Elsevier BV. - 1095-9327 .- 1044-7431. ; 85, s. 211-219
  • Tidskriftsartikel (refereegranskat)abstract
    • γ-Secretase inhibitors have been considered promising drug candidates against Alzheimer's disease (AD) due to their ability to reduce amyloid-β (Aβ) production. However, clinical trials have been halted due to lack of clinical efficacy and/or side effects. Recent in vitro studies suggest that low doses of γ-secretase inhibitors may instead increase Aβ production. Using a stem cell-derived human model of cortical neurons and low doses of the γ-secretase inhibitor DAPT, the effects on a variety of Aβ peptides were studied using mass spectrometry. One major focus was to develop a novel method for specific detection of oligomeric Aβ (oAβ), and this was used to study the effects of low-dose γ-secretase inhibitor treatment on intracellular oAβ accumulation. Low-dose treatment (2 and 20nM) with DAPT increased the secretion of several Aβ peptides, especially Aβx-42. Furthermore, using the novel method for oAβ detection, we found that 2nM DAPT treatment of cortical neurons resulted in increased oAβ accumulation. Thus, low dose-treatment with DAPT causes both increased production of long, aggregation-prone Aβ peptides and accumulation of intracellular Aβ oligomers, both believed to contribute to AD pathology.
  •  
2.
  •  
3.
  • Alic, I., et al. (författare)
  • Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26:10, s. 5766-5788
  • Tidskriftsartikel (refereegranskat)abstract
    • A population of more than six million people worldwide at high risk of Alzheimer's disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of beta-amyloid-(A beta)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar A beta deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss. Presence/absence of AD-like pathology was donor-specific (reproducible between individual organoids/iPSC lines/experiments). Pathology could be triggered in pathology-negative T21 organoids by CRISPR/Cas9-mediated elimination of the third copy of chromosome 21 gene BACE2, but prevented by combined chemical beta and gamma-secretase inhibition. We found that T21 organoids secrete increased proportions of A beta-preventing (A beta 1-19) and A beta-degradation products (A beta 1-20 and A beta 1-34). We show these profiles mirror in cerebrospinal fluid of people with DS. We demonstrate that this protective mechanism is mediated by BACE2-trisomy and cross-inhibited by clinically trialled BACE1 inhibitors. Combined, our data prove the physiological role of BACE2 as a dose-sensitive AD-suppressor gene, potentially explaining the dementia delay in similar to 30% of people with DS. We also show that DS cerebral organoids could be explored as pre-morbid AD-risk population detector and a system for hypothesis-free drug screens as well as identification of natural suppressor genes for neurodegenerative diseases.
  •  
4.
  • Arber, C., et al. (författare)
  • Familial Alzheimer’s disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta
  • 2020
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 25:11, s. 2919-2931
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial Alzheimer’s disease (fAD) mutations alter amyloid precursor protein (APP) cleavage by γ-secretase, increasing the proportion of longer amyloidogenic amyloid-β (Aβ) peptides. Using five control induced pluripotent stem cell (iPSC) lines and seven iPSC lines generated from fAD patients, we investigated the effects of mutations on the Aβ secretome in human neurons generated in 2D and 3D. We also analysed matched CSF, post-mortem brain tissue, and iPSCs from the same participant with the APP V717I mutation. All fAD mutation lines demonstrated an increased Aβ42:40 ratio relative to controls, yet displayed varied signatures for Aβ43, Aβ38, and short Aβ fragments. We propose four qualitatively distinct mechanisms behind raised Aβ42:40. (1) APP V717I mutations alter γ-secretase cleavage site preference. Whereas, distinct presenilin 1 (PSEN1) mutations lead to either (2) reduced γ-secretase activity, (3) altered protein stability or (4) reduced PSEN1 maturation, all culminating in reduced γ-secretase carboxypeptidase-like activity. These data support Aβ mechanistic tenets in a human physiological model and substantiate iPSC-neurons for modelling fAD. © 2019, Springer Nature Limited.
  •  
5.
  • Ashton, Nicholas J., et al. (författare)
  • Update on biomarkers for amyloid pathology in Alzheimer's disease
  • 2018
  • Ingår i: Biomarkers in Medicine. - : Future Medicine Ltd. - 1752-0363 .- 1752-0371. ; 12:7, s. 799-812
  • Forskningsöversikt (refereegranskat)abstract
    • At the center of Alzheimer's disease pathogenesis is the aberrant aggregation of amyloid-β (Aβ) into oligomers, fibrils and plaques. Effective monitoring of Aβ deposition directly in patients is essential to assist anti-Aβ therapeutics in target engagement and participant selection. In the advent of approved anti-Aβ therapeutics, biomarkers will become of fundamental importance in initiating treatments having disease modifying effects at the earliest stage. Two well-established Aβ biomarkers are widely utilized: Aβ-binding ligands for positron emission tomography and immunoassays to measure Aβ42 in cerebrospinal fluid. In this review, we will discuss the current clinical, diagnostic and research state of biomarkers for Aβ pathology. Furthermore, we will explore the current application of blood-based markers to assess Aβ pathology.
  •  
6.
  • Gkanatsiou, Eleni, et al. (författare)
  • A distinct brain beta amyloid signature in cerebral amyloid angiopathy compared to Alzheimer's disease.
  • 2019
  • Ingår i: Neuroscience letters. - : Elsevier BV. - 1872-7972 .- 0304-3940. ; 701, s. 125-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral amyloid angiopathy (CAA) is a type of vascular disease present in more than 50% of demented elderly and more than 80% of Alzheimer's disease (AD) patients. Both CAA and AD are characterized by extracellular Aβ deposits with the distinction that CAA has vascular deposits while AD has amyloid plaques. In this study, we used immunoprecipitation (IP) in combination with mass spectrometry (MS) to test the hypothesis that the Aβ peptide pattern differs between subjects having Aβ plaque pathology only and subjects with Aβ plaque pathology together with CAA pathology. Occipital lobes from 12 AD brains, ranging from no CAA to severe CAA, were extracted using 70% formic acid followed by IP-MS analysis. The Aβ peptide pattern differed greatly between subjects with no CAA compared to subjects with CAA. In cases with CAA, the most abundant Aβ peptides ended at amino acid 40 including Aβ1-40 (P = .048) and Aβ 2-40 (P = .0253) which were significantly increased compared to cases with no CAA. This was in contrast to subjects with no CAA where the most abundant Aβ peptides ended at amino acid 42 of which Aβ1-42 (P = .0101) and Aβ2-42 (P = .0051) as well as the pyroglutamate (pGlu)-modified peptides pGlu Aβ3-42 (P = .0177), and pGlu Aβ11-42 (P = .0088) were significantly increased compared to CAA subjects. The results are in line with earlier immunohistochemistry data and show that the molecular composition of the Aβ deposits found in blood vessels are different to the parenchymal deposits, suggesting they arise from distinct pathogenic pathways. This information may be useful in the development of pathology-specific biomarkers.
  •  
7.
  • Gkanatsiou, Eleni, et al. (författare)
  • Amyloid pathology and synaptic loss in pathological aging
  • 2021
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 159:2, s. 258-272
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory dysfunction and cognitive decline. Pathological aging (PA) describes patients who are amyloid-positive but cognitively unimpaired at time of death. Both AD and PA contain amyloid plaques dominated by amyloid beta (A beta) peptides. In this study, we investigated and compared synaptic protein levels, amyloid plaque load, and A beta peptide patterns between AD and PA. Two cohorts of post-mortem brain tissue were investigated. In the first, consisting of controls, PA, AD, and familial AD (FAD) individuals, synaptic proteins extracted with tris(hydroxymethyl)aminomethane-buffered saline (TBS) were analyzed. In the second, consisting of tissue from AD and PA patients from three different regions (occipital lobe, frontal lobe, and cerebellum), a two-step extraction was performed. Five synaptic proteins were extracted using TBS, and from the remaining portion A beta peptides were extracted using formic acid. Subsequently, immunoprecipitation with several antibodies targeting different proteins/peptides was performed for both fractions, which were subsequently analyzed by mass spectrometry. The levels of synaptic proteins were lower in AD (and FAD) compared with PA (and controls), confirming synaptic loss in AD patients. The amyloid plaque load was increased in AD compared with PA, and the relative amount of A beta 40 was higher in AD while for A beta 42 it was higher in PA. In AD loss of synaptic function was associated with increased plaque load and increased amounts of A beta 40 compared with PA cases, suggesting that synaptic function is preserved in PA cases even in the presence of A beta.
  •  
8.
  • Gkanatsiou, Eleni, et al. (författare)
  • Characterization of monomeric and soluble aggregated A beta in Down's syndrome and Alzheimer's disease brains
  • 2021
  • Ingår i: Neuroscience Letters. - : Elsevier. - 0304-3940 .- 1872-7972. ; 754
  • Tidskriftsartikel (refereegranskat)abstract
    • The major characteristics of Alzheimer's disease (AD) are amyloid plaques, consisting of aggregated beta amyloid (A beta) peptides, together with tau pathology (tangles, neuropil treads and dystrophic neurites surrounding the plaques), in the brain. Down's syndrome (DS) individuals are at increased risk to develop AD-type pathology; most DS individuals have developed substantial pathology already at the age of 40. DS individuals have an extra copy of chromosome 21, harbouring the amyloid precursor protein gene (APP). Our aim was to investigate the A beta peptide pattern in DS and AD brains to investigate differences in their amyloid deposition and aggregation, respectively. Cortical tissue from patients with DS (with amyloid pathology), sporadic AD and controls were homogenized and fractionated into TBS (water soluble) and formic acid (water insoluble) fractions. Immunoprecipitation (IP) was performed using a variety of antibodies targeting different A beta species including oligomeric A beta. Mass spectrometry was then used to evaluate the presence of A beta species in the different patient groups. A large number of A beta peptides were identified including A beta 1-X, 2-X, 3-X, 4-X, 5-X, 11-X, and A beta peptides extended N terminally of the BACE1 cleavage site and ending at amino 15 in the A beta sequence APP/A beta(-X to 15), as well as peptides post-translationally modified by pyroglutamate formation. Most A beta peptides had higher abundance in AD and DS compared to controls, except the APP/A beta(-X to 15) peptides which were most abundant in DS followed by controls and AD. Furthermore, the abundancies of A?X-40 and A beta X-34 were increased in DS compared with AD. A beta 1-40, A beta 1-42, and A beta 4-42 were identified as the main constitutes of protofibrils (IP'd using mAb158) and higher relative A beta 1-42 signals were obtained compared with samples IP'd with 6E10 + 4G8, indicating that the protofibrils/oligomers were enriched with peptides ending at amino acid 42. All A? peptides found in AD were also present in DS indicating similar pathways of A beta peptide production, degradation and accumulation, except for APP/A beta(-X to 15). Likewise, the A beta peptides forming protofibrils/oligomers in both AD and DS were similar, implying the possibility that treatment with clinical benefit in sporadic AD might also be beneficial for subjects with DS.
  •  
9.
  • Gkanatsiou, Eleni, et al. (författare)
  • Characterization of monomeric and soluble aggregated Aβ in Down's syndrome and Alzheimer's disease brains.
  • 2021
  • Ingår i: Neuroscience letters. - : Elsevier BV. - 1872-7972 .- 0304-3940. ; 754
  • Tidskriftsartikel (refereegranskat)abstract
    • The major characteristics of Alzheimer's disease (AD) are amyloid plaques, consisting of aggregated beta amyloid (Aβ) peptides, together with tau pathology (tangles, neuropil treads and dystrophic neurites surrounding the plaques), in the brain. Down's syndrome (DS) individuals are at increased risk to develop AD-type pathology; most DS individuals have developed substantial pathology already at the age of 40. DS individuals have an extra copy of chromosome 21, harbouring the amyloid precursor protein gene (APP). Our aim was to investigate the Aβ peptide pattern in DS and AD brains to investigate differences in their amyloid deposition and aggregation, respectively. Cortical tissue from patients with DS (with amyloid pathology), sporadic AD and controls were homogenized and fractionated into TBS (water soluble) and formic acid (water insoluble) fractions. Immunoprecipitation (IP) was performed using a variety of antibodies targeting different Aβ species including oligomeric Aβ. Mass spectrometry was then used to evaluate the presence of Aβ species in the different patient groups. A large number of Aβ peptides were identified including Aβ1-X, 2-X, 3-X, 4-X, 5-X, 11-X, and Aβ peptides extended N terminally of the BACE1 cleavage site and ending at amino 15 in the Aβ sequence APP/Aβ(-X to 15), as well as peptides post-translationally modified by pyroglutamate formation. Most Aβ peptides had higher abundance in AD and DS compared to controls, except the APP/Aβ(-X to 15) peptides which were most abundant in DS followed by controls and AD. Furthermore, the abundancies of AβX-40 and AβX-34 were increased in DS compared with AD. Aβ1-40, Aβ1-42, and Aβ4-42 were identified as the main constitutes of protofibrils (IP'd using mAb158) and higher relative Aβ1-42 signals were obtained compared with samples IP'd with 6E10 + 4G8, indicating that the protofibrils/oligomers were enriched with peptides ending at amino acid 42. All Aβ peptides found in AD were also present in DS indicating similar pathways of Aβ peptide production, degradation and accumulation, except for APP/Aβ(-X to 15). Likewise, the Aβ peptides forming protofibrils/oligomers in both AD and DS were similar, implying the possibility that treatment with clinical benefit in sporadic AD might also be beneficial for subjects with DS.
  •  
10.
  • Gkanatsiou, Eleni (författare)
  • Revealing the complex nature of amyloid beta and its relation to dementia
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Alzheimer disease (AD) is the most common type of dementia and characterized by the accumulation of amyloid plaques in the extracellular space of the brain parenchyma. Amyloid plaques consist of amyloid beta peptides (Aβ). Amyloid pathology can also be involved in other types of dementia, either as a driving force or as a coexisting pathology. In this thesis was the Aβ peptide content in relation to different amyloid deposits, types of dementia and regions investigated with the goal to improve our understanding of amyloid pathology in dementia. To analyse Aβ peptides, a hybrid immunoprecipitation - mass spectrometry method was used. The studies presented here reveal a different Aβ peptide pattern in individuals with amyloid pathology, but cognitively unaffected, compared with AD patients, who suffer from cognitive decline. Moreover, vascular Aβ contribution, due to cerebral amyloid angiopathy, differs from amyloid plaque Aβ contribution. For other groups with plaque pathology, such as Down syndrome, dementia with Lewy bodies, and Parkinson’s disease dementia, there are minor differences in the Aβ peptide pattern compared with AD. In this work, the Aβ content of the protofibril/oligomeric forms, a major anti-amyloid therapeutical target, is also revealed. This thesis can be the beginning of a deeper understanding of the complex nature of amyloid pathology and its contribution to dementia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy