SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gkini Anamaria) "

Sökning: WFRF:(Gkini Anamaria)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brennan, Seán J., 1995-, et al. (författare)
  • Spectroscopic observations of progenitor activity 100 days before a Type Ibn supernova
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • Obtaining spectroscopic observations of the progenitors of core-collapse supernovae is often unfeasible, due to an inherent lack of knowledge as to what stars experience supernovae and when they will explode. In this Letter we present photometric and spectroscopic observations of the progenitor activity of SN 2023fyq before the He-rich progenitor explodes as a Type Ibn supernova. The progenitor of SN 2023fyq shows an exponential rise in flux prior to core collapse. Complex He I emission line features are observed in the progenitor spectra, with a P Cygni-like profile, as well as an evolving broad base with velocities of the order of 10 000 km s−1. The luminosity and evolution of SN 2023fyq is consistent with a Type Ibn, reaching a peak r-band magnitude of −18.8 mag, although there is some uncertainty regarding the distance to the host, NGC 4388, which is located in the Virgo cluster. We present additional evidence of asymmetric He-rich material being present both prior to and after the explosion of SN 2023fyq, which suggests that this material survived the ejecta interaction. Broad [O I], C I, and the Ca II triplet lines are observed at late phases, confirming that SN 2023fyq was a genuine supernova, rather than a non-terminal interacting transient. SN 2023fyq provides insight into the final moments of a massive star’s life, demonstrating that the progenitor is likely highly unstable before core collapse.
  •  
2.
  • Koulouridis, E., et al. (författare)
  • AGNs in massive galaxy clusters : Role of galaxy merging, infalling groups, cluster mass, and dynamical state
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. There is compelling evidence that active galactic nuclei (AGNs) in high-density regions have undergone a different evolution than their counterparts in the field, indicating that they are strongly affected by their environment. However, we still lack a comprehensive understanding of the dominant mechanisms that trigger the nucleus and the processes that drive the evolution of AGNs in clusters.Aims. To investigate (and possibly disentangle) the various factors that may affect the prevalence of AGNs in cluster galaxies, we selected a sample of 19 thoroughly studied X-ray-selected galaxy clusters from the LoCuSS survey. All these clusters are considered massive, with M500 ≳ 2 × 1014 M⊙, and span a narrow redshift range between z ∼ 0.16 and 0.28.Methods. We divided the cluster surroundings into two concentric annuli with a width of R500 radius. We considered the first annulus as the central cluster region and the second as the outskirts. We further divided the cluster sample based on the presence of infalling X-ray-detected groups, cluster mass, or dynamical state. We determined the AGN fraction in cluster galaxies of the various sub-samples by correlating the X-ray point-like sources selected from the 4XMM DR10 catalogue with the highly complete spectroscopic catalogue of cluster members obtained with Hectospec. We subsequently used the optical spectra to determine the type of nuclear activity and we visually inspected the host morphology for indications of galaxy mergers or other interactions.Results. We found that the X-ray AGN fraction in the outskirts is consistent with the field, but it is significantly lower in cluster centres, in agreement with previous results for massive clusters. We show that these results do not depend on cluster mass, at least within our cluster mass range, nor on the presence of X-ray-detected infalling groups. Furthermore, we did not find any evidence of a spatial correlation between infalling groups and AGNs. Nevertheless, a significant excess of X-ray AGNs is found in the outskirts of relaxed clusters at the 2σ confidence level, compared both to non-relaxed clusters and to the field. Finally, according to the literature, the fraction of broad- to narrow-line AGNs in clusters is roughly consistent with the field. However, broad-line AGNs may be preferably located in cluster centres. In the outskirts, the optical spectra of X-ray AGNs present narrow emission lines or they are dominated by stellar emission.Conclusions. Our results suggest that the mechanisms that trigger AGN activity may vary between cluster centres and the outskirts. Ram pressure can efficiently remove the gas from infalling galaxies, thereby triggering AGN activity in some cases. However, the reduced availability of gas globally diminishes the fraction of AGNs in cluster centers. The surplus of X-ray AGNs identified in the outskirts of relaxed clusters may be attributed to an increased frequency of galaxy mergers, a notion that is further supported by the disturbed morphology observed in several galaxies.
  •  
3.
  • Schulze, Steve, 1980-, et al. (författare)
  • 1100 days in the life of the supernova 2018ibb The best pair-instability supernova candidate, to date
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • Stars with zero-age main sequence masses between 140 and 260 M⊙ are thought to explode as pair-instability supernovae (PISNe). During their thermonuclear runaway, PISNe can produce up to several tens of solar masses of radioactive nickel, resulting in luminous transients similar to some superluminous supernovae (SLSNe). Yet, no unambiguous PISN has been discovered so far. SN 2018ibb is a hydrogen-poor SLSN at z = 0.166 that evolves extremely slowly compared to the hundreds of known SLSNe. Between mid 2018 and early 2022, we monitored its photometric and spectroscopic evolution from the UV to the near-infrared (NIR) with 2–10 m class telescopes. SN 2018ibb radiated > 3 × 1051 erg during its evolution, and its bolometric light curve reached > 2 × 1044 erg s−1 at its peak. The long-lasting rise of > 93 rest-frame days implies a long diffusion time, which requires a very high total ejected mass. The PISN mechanism naturally provides both the energy source (56Ni) and the long diffusion time. Theoretical models of PISNe make clear predictions as to their photometric and spectroscopic properties. SN 2018ibb complies with most tests on the light curves, nebular spectra and host galaxy, and potentially all tests with the interpretation we propose. Both the light curve and the spectra require 25–44 M⊙ of freshly nucleosynthesised 56Ni, pointing to the explosion of a metal-poor star with a helium core mass of 120–130 M⊙ at the time of death. This interpretation is also supported by the tentative detection of [Co II] λ 1.025 μm, which has never been observed in any other PISN candidate or SLSN before. We observe a significant excess in the blue part of the optical spectrum during the nebular phase, which is in tension with predictions of existing PISN models. However, we have compelling observational evidence for an eruptive mass-loss episode of the progenitor of SN 2018ibb shortly before the explosion, and our dataset reveals that the interaction of the SN ejecta with this oxygen-rich circumstellar material contributed to the observed emission. That may explain this specific discrepancy with PISN models. Powering by a central engine, such as a magnetar or a black hole, can be excluded with high confidence. This makes SN 2018ibb by far the best candidate for being a PISN, to date.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy