SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Glaser Karin) "

Sökning: WFRF:(Glaser Karin)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Alikhani, Nyosha, et al. (författare)
  • Targeting Capacity and Conservation of PreP Homologues Localization in Mitochondria of Different Species
  • 2011
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 410:3, s. 400-410
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial presequences and other unstructured peptides are degraded inside mitochondria by presequence proteases (PrePs) identified in Arabidopsis thaliana (AtPreP), humans (hPreP), and yeast (Cym1/Mop112). The presequences of A. thaliana and human PreP are predicted to consist of 85 and 29 amino acids, respectively, whereas the Saccharomyces cerevisiae Cym1/Mop112 presequence contains only 7 residues. These differences may explain the reported targeting of homologous proteins to different mitochondrial subcompartments. Here we have investigated the targeting capacity of the PreP homologues' presequences. We have produced fusion constructs containing N-terminal portions of AtPreP(1-125), hPreP(1-69), and Cym1(1-40) coupled to green fluorescent protein (GFP) and studied their import into isolated plant, mammalian, and yeast mitochondria, followed by mitochondrial subfractionation. Whereas the AtPreP presequence has the capacity to target GFP into the mitochondrial matrix of all three species, the hPreP presequence only targets GFP to the matrix of mammalian and yeast mitochondria. The Cym1/Mop112 presequence has an overall much weaker targeting capacity and only ensures mitochondrial sorting in its host species yeast. Revisiting the submitochondrial localization of Cym1 revealed that endogenous Cym1/Mop112 is localized to the matrix space, as has been previously reported for the plant and human homologues. Moreover, complementation studies in yeast show that native AtPreP restores the growth phenotype of yeast cells lacking Cym1, demonstrating functional conservation.
  •  
3.
  • Allan, Eric, et al. (författare)
  • Interannual variation in land-use intensity enhances grassland multidiversity
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 111:1, s. 308-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
  •  
4.
  • Berglund, Anna-Karin, et al. (författare)
  • Defining the Determinants for Dual Targeting of Amino Acyl-tRNA Synthetases to Mitochondria and Chloroplasts
  • 2009
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 393:4, s. 803-814
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the organellar amino acyl-tRNA synthetases (aaRSs) are dually targeted to both mitochondria and chloroplasts using dual targeting peptides (dTPs). We have investigated the targeting properties and domain structure of dTPs of seven aaRSs by studying the in vitro and in vivo import of N-terminal deleted constructs of dTPs fused to green fluorescent protein. The deletion constructs were designed based on prediction programs, TargetP and Predotar, as well as LogoPlots derived from organellar proteomes in Arabidopsis thaliana. In vitro import was performed either into a single isolated organelle or as dual import (i.e., into a mixture of isolated mitochondria and chloroplasts followed by reisolation of the organelles). In vivo import was investigated as transient expression of the green fluorescent protein constructs in Nicotiana benthamiana protoplasts. Characterization of recognition determinants showed that the N-terminal portions of TyrRS-, ValRS- and ThrRS-dTPs (27, 22 and 23 amino acids, respectively) are required for targeting into both mitochondria and chloroplasts. Surprisingly, these N-terminal portions contain no or very few arginines (or lysines) but very high number of hydroxylated residues (26–51%). For two aaRSs, a domain structure of the dTP became evident. Removal of 20 residues from the dTP of ProRS abolished chloroplastic import, indicating that the N-terminal region was required for chloroplast targeting, whereas deletion of 16 N-terminal amino acids from AspRS-dTP inhibited the mitochondrial import, showing that in this case, the N-terminal portion was required for the mitochondrial import. Finally, deletion of N-terminal regions of dTPs for IleRS and LysRS did not affect dual targeting. In summary, it can be concluded that there is no general rule for how the determinants for dual targeting are distributed within dTPs; in most cases, the N-terminal portion is essential for import into both organelles, but in a few cases, a domain structure was observed.
  •  
5.
  • Berglund, Anna-Karin, 1979- (författare)
  • Dual Targeting of Proteins to Mitochondria and Chloroplasts
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The vast majority of mitochondrial and chloroplastic proteins are nuclear encoded, synthesized in the cytosol and imported into the respective organelle using an N-terminal extension, the targeting peptide (TP). After import into the organelle, the TP is cleaved off and degraded by the Presequence protease (PreP). The import process is thought to be highly specific, however there is a group of proteins that are localised to both mitochondria and chloroplasts, using an ambiguous, dual targeting peptide (dTP). The aim of this thesis was to investigate targeting properties of dTPs. Analysis of the amino acid content of all currently known dually targeted proteins revealed that the dTPs are enriched in hydroxylated, hydrophobic and positively charged residues, lacking acidic residues, whereas the content of serine, arginine and proline is intermediary in comparison to the mitochondrial and chloroplastic TPs. dTPs do not form amphiphilic a-helices, characteristic of the mitochondrial TPs, but the helical structure can be induced in membrane mimetic environment, as revealed by spectroscopic studies of a dTP of an aminoacyl- tRNA-synthetase (aaRS). In vitro and in vivo import experiments of fusion constructs containing N-terminal truncations of seven aaRS-dTPs coupled to green fluorescent protein (GFP) demonstrated different organisation of targeting determinants showing that the N-terminal portion of dTPs was crucial for import into both organelles or at least one organelle for different constructs. In addition, studies of targeting capacity of the TPs of PreP homologues from plant, mammal and yeast (AtPreP, hPreP and Mop112) showed species dependent intra-mitochondrial localisation of the coupled GFP and demonstrated functional complementation of an intermembrane space located Mop112 with a matrix located AtPreP. The studies presented here contribute to understanding of the intracellular and intra-mitochondrial sorting process of proteins in the eukaryotic cell.
  •  
6.
  • Berglund, Anna-Karin, et al. (författare)
  • Dual Targeting to Mitochondria and Chloroplasts : Characterization of Thr–tRNA Synthetase Targeting Peptide
  • 2009
  • Ingår i: Molecular Plant. - Shanghai : Oxford University Press. - 1674-2052. ; 2:6, s. 1298-1309
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a group of proteins that are encoded by a single gene,   expressed as a single precursor protein and dually targeted to both   mitochondria and chloroplasts using an ambiguous targeting peptide.   Sequence analysis of 43 dual targeted proteins in comparison with 385   mitochondrial proteins and 567 chloroplast proteins of Arabidopsis   thaliana revealed an overall significant increase in phenylalanines,   leucines, and serines and a decrease in acidic amino acids and glycine   in dual targeting peptides (dTPs). The N-terminal portion of dTPs has   significantly more serines than mTPs. The number of arginines is   similar to those in mTPs, but almost twice as high as those in cTPs. We   have investigated targeting determinants of the dual targeting peptide   of Thr-tRNA synthetase (ThrRS-dTP) studying organellar import of N- and   C-terminal deletion constructs of ThrRS-dTP coupled to GFP. These   results show that the 23 amino acid long N-terminal portion of   ThrRS-dTP is crucial but not sufficient for the organellar import. The   C-terminal deletions revealed that the shortest peptide that was   capable of conferring dual targeting was 60 amino acids long. We have   purified the ThrRS-dTP(2-60) to homogeneity after its expression as a   fusion construct with GST followed by CNBr cleavage and ion exchange   chromatography. The purified ThrRS-dTP(2-60) inhibited import of   pF(1)beta into mitochondria and of pSSU into chloroplasts at mu M   concentrations showing that dual and organelle-specific proteins use   the same organellar import pathways. Furthermore, the CD spectra of   ThrRS-dTP(2-60) indicated that the peptide has the propensity for   forming alpha-helical structure in membrane mimetic environments;   however, the membrane charge was not important for the amount of   induced helical structure. This is the first study in which a dual   targeting peptide has been purified and investigated by biochemical and   biophysical means.
  •  
7.
  • Bhushan, Shashi, et al. (författare)
  • The role of the N-terminal domain of chloroplast targeting peptides in organellar protein import and miss-sorting
  • 2006
  • Ingår i: FEBS Letters. - : Wiley. - 0014-5793 .- 1873-3468. ; 580:16, s. 3966-3972
  • Tidskriftsartikel (refereegranskat)abstract
    • We have analysed 385 mitochondrial and 567 chloroplastic signal sequences of proteins found in the organellar proteomes of Arabidopsis thaliana. Despite overall similarities, the first 16 residues of transit peptides differ remarkably. To test the hypothesis that the N-terminally truncated transit peptides would redirect chloroplastic precursor proteins to mitochondria, we studied import of the N-terminal deletion mutants of ELIP, PetC and Lhcb2.1. The results show that the deletion mutants were neither imported into chloroplasts nor miss-targeted to mitochondria in vitro and in vivo, showing that the entire transit peptide is necessary for correct targeting as well as miss-sorting.
  •  
8.
  • Clark, M. S., et al. (författare)
  • Multi-omics for studying and understanding polar life
  • 2023
  • Ingår i: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Polar ecosystems are experiencing amongst the most rapid rates of regional warming on Earth. Here, we discuss ‘omics’ approaches to investigate polar biodiversity, including the current state of the art, future perspectives and recommendations. We propose a community road map to generate and more fully exploit multi-omics data from polar organisms. These data are needed for the comprehensive evaluation of polar biodiversity and to reveal how life evolved and adapted to permanently cold environments with extreme seasonality. We argue that concerted action is required to mitigate the impact of warming on polar ecosystems via conservation efforts, to sustainably manage these unique habitats and their ecosystem services, and for the sustainable bioprospecting of novel genes and compounds for societal gain.
  •  
9.
  • Glaser, Joakim, et al. (författare)
  • Kultur och fritid i Helsingborg 1970-2015
  • 2023
  • Ingår i: Speglingar av en tid 1970-2015. - : Helsingborgs stad. - 9789152765265
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
10.
  • Glaser, Karin, et al. (författare)
  • The influence of environmental factors on protistan microorganisms in grassland soils along a land-use gradient
  • 2015
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 537, s. 33-42
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we investigated the effect of land use intensity, soil parameters and vegetation on protistan communities in grassland soils. We performed qualitative (T-RFLP) and quantitative (qPCR) analyses using primers specifically targeting the 18S rRNA gene for all Eukarya and for two common flagellate groups, i.e. the Chrysophyceae and the Kinetoplastea. Both approaches were applied to extracted soil DNA and RNA, in order to distinguish between the potentially active protists (i.e. RNA pool) and the total protistan communities, including potentially inactive and encysted cells (i.e. DNA pool). Several environmental determinants such as site, soil parameters and vegetation had an impact on the T-RFLP community profiles and the abundance of the quantified 18S rRNA genes. Correlating factors often differed between quantitative (qPCR) and qualitative (T-RFLP) approaches. For instance the Chrysophyceae/Eukarya 18S rDNA ratio as determined by qPCR correlated with the C/N ratio, whereas the community composition based on T-RLFP analysis was not affected indicating that both methods taken together provide a more complete picture of the parameters driving protist diversity. Moreover, distinct T-RFs were obtained, which could serve as potential indicators for either active organisms or environmental conditions like water content. While site was the main determinant across all investigated exploratories, land use seemed to be of minor importance for structuring protist communities. The impact of other parameters differed between the target groups, e.g. Kinetoplastea reacted on changes to water content on all sites, whereas Chrysophyceae were only affected in the Schorfheide. Finally, in most cases different responses were observed on RNA- and DNA-level, respectively. Vegetation for instance influenced the two flagellate groups only at the DNA-level across all sites. Future studies should thus include different protistan groups and also distinguish between active and inactive cells, in order to reveal causal shifts in community composition and abundance in agriculturally used systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (13)
annan publikation (1)
doktorsavhandling (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Glaser, Elzbieta (5)
Berglund, Anna-Karin (5)
Alikhani, Nyosha (2)
Engmann, Tanja (2)
Pavlov, Pavel (2)
Langer, Thomas (2)
visa fler...
Spånning, Erika (2)
Becker, B. (1)
Tellgren-Roth, Chris ... (1)
Abrahamson, Magnus (1)
Nilsson, Anders (1)
Collins, G (1)
Bex, Axel (1)
Giles, Rachel H. (1)
Lannfelt, Lars (1)
Wallberg, Andreas (1)
Folke, Carl (1)
Fanzo, Jessica (1)
Ramanujam, Ryan (1)
Birkhofer, Klaus (1)
Mäler, Lena (1)
Fetzer, Ingo (1)
Van Poppel, Hendrik (1)
Troell, Max (1)
Jakobsson, Kristina (1)
Glaser, J. (1)
Hansson, Erik, 1987 (1)
Ramirez, Jorge (1)
Akpalu, Wisdom (1)
Stage, Jesper, 1972- (1)
Berglund, Anna-Karin ... (1)
Ekström, Ulf (1)
Ljungberg, Börje (1)
Pascual, Unai (1)
Tscharntke, Teja (1)
Armitage, Derek (1)
Campbell, Donovan (1)
Bennett, Nathan J. (1)
Broberg, Karin (1)
Voegtle, F. -Nora (1)
Meisinger, Chris (1)
Glaser, Elzbieta, Pr ... (1)
Allan, Eric (1)
Bossdorf, Oliver (1)
Dormann, Carsten F. (1)
Prati, Daniel (1)
Gossner, Martin M. (1)
Bluethgen, Nico (1)
Bellach, Michaela (1)
Boch, Steffen (1)
visa färre...
Lärosäte
Stockholms universitet (8)
Karolinska Institutet (4)
Uppsala universitet (3)
Lunds universitet (3)
Umeå universitet (2)
Göteborgs universitet (1)
visa fler...
Kungliga Tekniska Högskolan (1)
Luleå tekniska universitet (1)
Malmö universitet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (15)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (7)
Naturvetenskap (6)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy