SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Glasser A. H.) "

Sökning: WFRF:(Glasser A. H.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Pfeffer, W. Tad, et al. (författare)
  • The Randolph Glacier Inventory : a globally complete inventory of glaciers
  • 2014
  • Ingår i: Journal of Glaciology. - 0022-1430 .- 1727-5652. ; 60:221, s. 537-552
  • Tidskriftsartikel (refereegranskat)abstract
    • The Randolph Glacier Inventory (RGI) is a globally complete collection of digital outlines of glaciers, excluding the ice sheets, developed to meet the needs of the Fifth Assessment of the Intergovernmental Panel on Climate Change for estimates of past and future mass balance. The RGI was created with limited resources in a short period. Priority was given to completeness of coverage, but a limited, uniform set of attributes is attached to each of the similar to 198 000 glaciers in its latest version, 3.2. Satellite imagery from 1999-2010 provided most of the outlines. Their total extent is estimated as 726 800 +/- 34 000 km(2). The uncertainty, about +/- 5%, is derived from careful single-glacier and basin-scale uncertainty estimates and comparisons with inventories that were not sources for the RGI. The main contributors to uncertainty are probably misinterpretation of seasonal snow cover and debris cover. These errors appear not to be normally distributed, and quantifying them reliably is an unsolved problem. Combined with digital elevation models, the RGI glacier outlines yield hypsometries that can be combined with atmospheric data or model outputs for analysis of the impacts of climatic change on glaciers. The RGI has already proved its value in the generation of significantly improved aggregate estimates of glacier mass changes and total volume, and thus actual and potential contributions to sea-level rise.
  •  
3.
  • Chu, M.S., et al. (författare)
  • Physics of Plasmas Modeling of Feedback and Rotation Stabilization of the Resistive Wall Mode in Tokamaks
  • 2004
  • Ingår i: Physics of Plasmas. ; 11, s. 2497-
  • Tidskriftsartikel (refereegranskat)abstract
    • Steady-state operation of the advanced tokamak reactor relies on maintaining plasma stability with respect to the resistive wall mode ~RWM!. Active magnetic feedback and plasma rotation are the two methods proposed and demonstrated for this purpose. A comprehensive modeling effort including both magnetic feedback and plasma rotation is needed for understanding the physical mechanisms of the stabilization and to project to future devices. For plasma with low rotation, a complete solution for the feedback issue is obtained by assuming the plasma obeys ideal magnetohydrodynamics ~MHDs! and utilizing a normal mode approach ~NMA! @M. S. Chu et al., Nucl. Fusion 43, 441 ~2003!#. It is found that poloidal sensors are more effective than radial sensors and coils inside of the vacuum vessel more effective than outside. For plasmas with non-negligible rotation, a comprehensive linear nonideal MHD code, the MARS-F has been found to be suitable. MARS-F @Y. Q. Liu et al., Phys. Plasmas 7, 3681 ~2000!# has been benchmarked in the ideal MHD limit against the NMA. The effect of rotation stabilization of the plasma depends on the plasma dissipation model. Broad qualitative features of the experiment are reproduced. Rotation reduces the feedback gain required for RWM stabilization. Reduction is significant when rotation is near the critical rotation speed needed for stabilization. The International Thermonuclear Experimental Reactor ~ITER! @R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 ~2002!# ~scenario IV for advanced tokamak operation! may be feedback stabilized with babove the no wall limit and up to an increment of ;50% towards the ideal limit. Rotation further improves the stability.
  •  
4.
  •  
5.
  • Sabbagh, S. A., et al. (författare)
  • Resistive wall stabilized operation in rotating high beta NSTX plasmas
  • 2006
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 46:5, s. 635-644
  • Tidskriftsartikel (refereegranskat)abstract
    • The National Spherical Torus Experiment (NSTX) has demonstrated the advantages of low aspect ratio geometry in accessing high toroidal and normalized plasma beta, and βN ≡ 10 8〈βt〉 aB0/Ip. Experiments have reached βt = 39% and βN = 7.2 through boundary and profile optimization. High βN plasmas can exceed the ideal no-wall stability limit, βNno-wall, for periods much greater than the wall eddy current decay time. Resistive wall mode (RWM) physics is studied to understand mode stabilization in these plasmas. The toroidal mode spectrum of unstable RWMs has been measured with mode number n up to 3. The critical rotation frequency of Bondeson-Chu, Ωcrit = ωA/(4q2), describes well the RWM stability of NSTX plasmas when applied over the entire rotation profile and in conjunction with the ideal stability criterion. Rotation damping and global rotation collapse observed in plasmas exceeding βNno-wall differs from the damping observed during tearing mode activity and can be described qualitatively by drag due to neoclassical toroidal viscosity in the helically perturbed field of an ideal displacement. Resonant field amplification of an applied n = 1 field perturbation has been measured and increases with increasing βN. Equilibria are reconstructed including measured ion and electron pressure, toroidal rotation and flux isotherm constraint in plasmas with core rotation ω/ωA up to 0.48. Peak pressure shifts of 18% of the minor radius from the magnetic axis have been reconstructed.
  •  
6.
  •  
7.
  • Michel, R., et al. (författare)
  • Excitation functions for the production of radionuclides by neutron-induced reactions on C, O, Mg, Al, Si, Fe, Co, Ni, Cu, Ag, Te, Pb, and U up to 180 MeV
  • 2015
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584. ; 343, s. 30-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Irradiation experiments with well-characterized, quasi mono-energetic neutrons of energies between 32.7 MeV and 175.4 MeV were performed at UCL/Louvain-la-Neuve and TSL/Uppsala. The abundances of relatively short-lived residual radionuclides from 13 different target elements were determined by 7-spectrometry. More than 100 excitation functions of neutron-induced reactions were unfolded based on the neutron spectra and the radionuclide abundances with the aid of additional information that was provided by "guess" excitation functions calculated by the TALYS 1.0 code. The results are compared with the sparse existing data from other authors. The new excitation functions were validated by calculation of and comparison with experimental thick-target production rates. Consistency with neutron excitation functions up to 1.6 GeV, which were derived earlier by unfolding the thick-target production rates, was so demonstrated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy