SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Glassmeier Karl Heinz) "

Sökning: WFRF:(Glassmeier Karl Heinz)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Goetz, Charlotte, et al. (författare)
  • Warm protons at comet 67P/Churyumov-Gerasimenko-implications for the infant bow shock
  • 2021
  • Ingår i: Annales Geophysicae. - : European Geosciences Union (EGU). - 0992-7689 .- 1432-0576. ; 39:3, s. 379-396
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma around comet 67P/Churyumov-Gerasimenko showed remarkable variability throughout the entire Rosetta mission. Plasma boundaries such as the diamagnetic cavity, solar wind ion cavity and infant bow shock separate regions with distinct plasma parameters from each other. Here, we focus on a particular feature in the plasma: warm, slow solar wind protons. We investigate this particular proton population further by focusing on the proton behaviour and surveying all of the Rosetta comet phase data. We find over 300 events where Rosetta transited from a region with fast, cold protons into a region with warm, slow protons. We investigate the properties of the plasma and magnetic field at this boundary and the location where it can be found. We find that the protons are preferentially detected at intermediate gas production rates with a slight trend towards larger cometocentric distances for higher gas production rates. The events can mostly be found in the positive convective electric field hemisphere. These results agree well with simulations of the infant bow shock (IBS), an asymmetric structure in the plasma environment previously detected on only 2 d during the comet phase. The properties of the plasma on both sides of this structure are harder to constrain, but there is a trend towards higher electron flux, lower magnetic field, higher magnetic field power spectral density and higher density in the region that contains the warm protons. This is in partial agreement with the previous IBS definitions; however, it also indicates that the plasma and this structure are highly non-stationary. For future research, Comet Interceptor, with its multi-point measurements, can help to disentangle the spatial and temporal effects and give more clarity on the influence of changing upstream conditions on the movement of boundaries in this unusual environment.
  •  
2.
  • Jones, Geraint H., et al. (författare)
  • The Comet Interceptor Mission
  • 2024
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 220:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms − 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  •  
3.
  • Volwerk, Martin, et al. (författare)
  • Dynamic field line draping at comet 67P/Churyumov-Gerasimenko during the Rosetta dayside excursion
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 630
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The Rosetta dayside excursion took place in September-October 2015 when comet 67P/Churyumov-Gerasimenko (67P/CG) was located at similar to 1.36 AU from the Sun after it had passed perihelion on 13 August 2015 at similar to 1.25 AU. At this time, the comet was near its most active period, and its interaction with the solar wind was expected to be at its most intense, with ion pickup and magnetic field line draping. The dayside excursion was planned to move through different regions that were expected upstream of the cometary nucleus, and to possibly detect the location of the bow shock.Aims: The goal of this study is to describe the dynamic field line draping that takes place around the comet and the plasma processes that are connected to this.Methods: The data from the full Rosetta Plasma Consortium (RPC) were used to investigate the interaction of solar wind and comet, starting from boxcar-averaged magnetic field data in order to suppress high-frequency noise in the data. Through calculating the cone and clock angle of the magnetic field, we determined the draping pattern of the magnetic field around the nucleus of the comet. Then we studied the particle data in relation to the variations that are observed in the magnetic field.Results: During the dayside excursion, the magnetic field cone angle changed several times, which means that the magnetic field direction changes from pointing sunward to anti-sunward. This is caused by the changing directions of the interplanetary magnetic field that is transported toward the comet. The cone-angle direction shows that mass-loading of the interplanetary magnetic field of the solar wind leads to dynamic draping. The ion velocity and the magnetic field strength are correlated because the unmagnetized ions are accelerated more (less) strongly by the increasing (decreasing) magnetic field strength. There is an indication of an anticorrelation between the electron density and the magnetic field strength, which might be caused by the magnetized electrons being mirrored out of the strong field regions. The Rosetta RPC has shown that (dynamic) draping also occurs as mildly active comets, as was found at highly active comets such as 1P/Halley and 21P/Giacobini-Zinner, but also that determining both dynamic and nested draping will require a combination of fast flybys and slow excursions for future missions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy