SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Glowacki Eric D.) "

Sökning: WFRF:(Glowacki Eric D.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Datta-Chaudhuri, Timir, et al. (författare)
  • The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanisms" : current progress, challenges, and charting the future
  • 2021
  • Ingår i: Bioelectronic medicine. - : BioMed Central. - 2332-8886. ; 7:1
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • There is a broad and growing interest in Bioelectronic Medicine, a dynamic field that continues to generate new approaches in disease treatment. The fourth bioelectronic medicine summit "Technology targeting molecular mechanisms" took place on September 23 and 24, 2020. This virtual meeting was hosted by the Feinstein Institutes for Medical Research, Northwell Health. The summit called international attention to Bioelectronic Medicine as a platform for new developments in science, technology, and healthcare. The meeting was an arena for exchanging new ideas and seeding potential collaborations involving teams in academia and industry. The summit provided a forum for leaders in the field to discuss current progress, challenges, and future developments in Bioelectronic Medicine. The main topics discussed at the summit are outlined here.
  •  
2.
  • Apaydin, Dogukan H., et al. (författare)
  • Electrochemical Capture and Release of CO2 in Aqueous Electrolytes Using an Organic Semiconductor Electrode
  • 2017
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 9:15, s. 12919-12923
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing efficient methods for capture and controlled release of carbon dioxide is crucial to any carbon. capture and utilization technology. Herein we present an approach using an organic. semiconductor electrode to electrochemically capture dissolved CO2 in aqueous electrolytes. The process relies on electrochemical reduction of a thin film of a naphthalene bisimide derivative, 2,7,bis (4-(2- (2-ethylhexyl)thiazol-4-yl)phenyObenzo [lmn][3,8] phenanthroline-1,3,6,8(2H,7H)-tetraone (NBIT). This molecule is specifically tailored to afford one-electron reversible and one-electron quasi-reversible reduction in aqueous conditions while, not dissolving or degrading. The reduced NBIT reacts with CO2 to form a stable aemicarbonate salt, which can be subsequently oxidized electrochemically to release CO2. The semicarbonate structure is confirmed by in situ IR spectroelectrochemistry. This process of capturing and releasing carbon dioxide can be realized in an oxygen-free environment under ambient pressure and temperature, with uptake efficiency for CO2 capture of similar to 2.3 mmol g(-1). This is on par with the best solution-phase amine chemical capture technologies available today.
  •  
3.
  • Brodsky, Jan, et al. (författare)
  • Downsizing the Channel Length of Vertical Organic Electrochemical Transistors
  • 2023
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 15:22, s. 27002-27009
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic electrochemical transistors (OECTs) are promisingbuildingblocks for bioelectronic devices such as sensors and neural interfaces.While the majority of OECTs use simple planar geometry, there is interestin exploring how these devices operate with much shorter channelson the submicron scale. Here, we show a practical route toward theminimization of the channel length of the transistor using traditionalphotolithography, enabling large-scale utilization. We describe thefabrication of such transistors using two types of conducting polymers.First, commercial solution-processed poly-(dioxyethylenethiophene):poly-(styrenesulfonate), PEDOT:PSS. Next, we also exploit the short channel lengthto support easy in situ electropolymerization of poly-(dioxyethylenethiophene):tetrabutylammonium hexafluorophosphate, PEDOT:PF6. Both variantsshow different promising features, leading the way in terms of transconductance(g (m)), with the measured peak g (m) up to 68 mS for relatively thin (280 nm) channel layerson devices with the channel length of 350 nm and with widths of 50,100, and 200 & mu;m. This result suggests that the use of electropolymerizedsemiconductors, which can be easily customized, is viable with verticalgeometry, as uniform and thin layers can be created. Spin-coated PEDOT:PSSlags behind with the lower values of g (m); however, it excels in terms of the speed of the device and alsohas a comparably lower off current (300 nA), leading to unusuallyhigh on/off ratio, with values up to 8.6 x 10(4). Ourapproach to vertical gap devices is simple, scalable, and can be extendedto other applications where small electrochemical channels are desired.
  •  
4.
  • Missey, Florian, et al. (författare)
  • Obstructive sleep apnea improves with non-invasive hypoglossal nerve stimulation using temporal interference
  • 2023
  • Ingår i: Bioelectronic Medicine. - : BioMed Central (BMC). - 2332-8886. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Peripheral nerve stimulation is used in both clinical and fundamental research for therapy and exploration. At present, non-invasive peripheral nerve stimulation still lacks the penetration depth to reach deep nerve targets and the stimulation focality to offer selectivity. It is therefore rarely employed as the primary selected nerve stimulation method. We have previously demonstrated that a new stimulation technique, temporal interference stimulation, can overcome depth and focality issues.Methods: Here, we implement a novel form of temporal interference, bilateral temporal interference stimulation, for bilateral hypoglossal nerve stimulation in rodents and humans. Pairs of electrodes are placed alongside both hypoglossal nerves to stimulate them synchronously and thus decrease the stimulation amplitude required to activate hypoglossal-nerve-controlled tongue movement.Results: Comparing bilateral temporal interference stimulation with unilateral temporal interference stimulation, we show that it can elicit the same behavioral and electrophysiological responses at a reduced stimulation amplitude. Traditional transcutaneous stimulation evokes no response with equivalent amplitudes of stimulation.Conclusions: During first-in-man studies, temporal interference stimulation was found to be well-tolerated, and to clinically reduce apnea-hypopnea events in a subgroup of female patients with obstructive sleep apnea. These results suggest a high clinical potential for the use of temporal interference in the treatment of obstructive sleep apnea and other diseases as a safe, effective, and patient-friendly approach.Trial registration: The protocol was conducted with the agreement of the International Conference on Harmonisation Good Clinical Practice (ICH GCP), applicable United States Code of Federal Regulations (CFR) and followed the approved BRANY IRB File # 22-02-636-1279.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy