SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Glynn James) "

Sökning: WFRF:(Glynn James)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Glynn, James, et al. (författare)
  • Economic Impacts of Future Changes in the Energy System : National Perspectives
  • 2015
  • Ingår i: Informing Energy and Climate Policies Using Energy Systems Models. - Cham : Encyclopedia of Global Archaeology/Springer Verlag. - 9783319165394 - 9783319165400 ; , s. 359-387
  • Bokkapitel (refereegranskat)abstract
    • In a climate constrained future, hybrid energy-economy model coupling gives additional insight into interregional competition, trade, industrial delocalisation and overall macroeconomic consequences of decarbonising the energy system. Decarbonising the energy system is critical in mitigating climate change. This chapter summarises modelling methodologies developed in the ETSAP community to assess economic impacts of decarbonising energy systems at a national level. The preceding chapter focuses on a global perspective. The modelling studies outlined here show that burden sharing rules and national revenue recycling schemes for carbon tax are critical for the long-term viability of economic growth and equitable engagement on combating climate change. Traditional computable general equilibrium models and energy systems models solved in isolation can misrepresent the long run carbon cost and underestimate the demand response caused by technological paradigm shifts in a decarbonised energy system. The approaches outlined within have guided the first evidence based decarbonisation legislation and continue to provide additional insights as increased sectoral disaggregation in hybrid modelling approaches is achieved
  •  
2.
  • Glynn, James, et al. (författare)
  • Economic Impacts of Future Changes in the Energy System : Global Perspectives
  • 2015
  • Ingår i: Informing Energy and Climate Policies Using Energy Systems Models. - Cham : Encyclopedia of Global Archaeology/Springer Verlag. - 9783319165394 - 9783319165400 ; , s. 333-358
  • Bokkapitel (refereegranskat)abstract
    • In a climate constrained future, hybrid energy-economy model coupling gives additional insight into interregional competition, trade, industrial delocalisation and overall macroeconomic consequences of decarbonising the energy system. Decarbonising the energy system is critical in mitigating climate change. This chapter summarises modelling methodologies developed in the ETSAP community to assess economic impacts of decarbonising energy systems at a global level. The next chapter of this book focuses on a national perspective. The range of economic impacts is regionally dependent upon the stage of economic development, the level of industrialisation, energy intensity of exports, and competition effects due to rates of relative decarbonisation. Developed nation’s decarbonisation targets are estimated to result in a manageable GDP loss in the region of 2 % by 2050. Energy intensive export driven developing countries such as China and India, and fossil fuel exporting nations can expect significantly higher GDP loss of up to 5 % GDP per year by mid-century.
  •  
3.
  • Panos, Evangelos, et al. (författare)
  • Deep decarbonisation pathways of the energy system in times of unprecedented uncertainty in the energy sector
  • 2023
  • Ingår i: Energy Policy. - : Elsevier Ltd. - 0301-4215 .- 1873-6777. ; 180:September
  • Tidskriftsartikel (refereegranskat)abstract
    • Unprecedented investments in clean energy technology are required for a net-zero carbon energy system before temperatures breach the Paris Agreement goals. By performing a Monte-Carlo Analysis with the detailed ETSAP-TIAM Integrated Assessment Model and by generating 4000 scenarios of the world's energy system, climate and economy, we find that the uncertainty surrounding technology costs, resource potentials, climate sensitivity and the level of decoupling between energy demands and economic growth influence the efficiency of climate policies and accentuate investment risks in clean energy technologies. Contrary to other studies relying on exploring the uncertainty space via model intercomparison, we find that the CO2 emissions and CO2 prices vary convexly and nonlinearly with the discount rate and climate sensitivity over time. Accounting for this uncertainty is important for designing climate policies and carbon prices to accelerate the transition. In 70% of the scenarios, a 1.5 °C temperature overshoot was within this decade, calling for immediate policy action. Delaying this action by ten years may result in 2 °C mitigation costs being similar to those required to reach the 1.5 °C target if started today, with an immediate peak in emissions, a larger uncertainty in the medium-term horizon and a higher effort for net-zero emissions.
  •  
4.
  • Wang, Nan (författare)
  • CO2 Separation - from Aqueous Amine Solvent to Ionic Liquid-based solvent
  • 2021
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • CO2 separation is one of the most important roles in CO2 mitigation target as many human production activities (e.g., cement, iron and steel, and biogas productions) cause CO2 emissions. The solvent-based absorption is the most mature technology for CO2 separation, where different solvents capture CO2 either in chemical or physical absorptions. However, different solvents used in the process always suffer from various problems. For example, the high energy penalty for solvent regeneration, the high solvent loss caused by high volatility and the solvent degradation, and the equipment corrosion are the major concerns of chemical solvent. For the physical solvents, the co-absorption of components other than CO2 reduces the solvent selectivity and increases the operation complexity. Therefore, deeper knowledge about the developed process and new solvent development are the two major ways of overcoming the above-mentioned problems. The goal of this work was to perform systematic studies on both conventional process and novel solvent system(s) for CO2 separation. The CO2 separation with MEA-based process was selected in the field of the conventional approach to capture CO2 from the industrial flues gases. The MEA solvent concentration was identified first, and the effect of three selected parameters, i.e., CO2 concentration, gas flow rate, and CO2 removal rate on capital cost, operational cost, and annual total cost, was evaluated to reduce the energy demand and process cost. 20% MEA solvent is identified as the optimal concentration. According to the parameter study, the CO2 concentration shows the most significant effect, followed by the gas flow rate, and the CO2 removal rate causes the smallest effect. When varying the selected parameters, CAPEX has a greater change in percentage value than OPEX; however, OPEX was the most important one to the total cost owing to its larger absolute value (approximately 3 times of CAPEX). For the solvent development, a conventional polyamine PEHA was selected as it exhibits high thermal stability, low toxicity, and low vapor pressure. Lab testing indicates the 20 wt.% PEHA solution has the best CO2 absorption performance. By using the real bio-syngas from a pilot-scale fixed bed gasifier, the gases other than CO2 (i.e., CO, H2, CH4) were not absorbed in PEHA to any significant extent even at relatively high pressure, and their presence did not affect the CO2 absorption capacity significantly. 20 wt.% PEHA aqueous solvent is a promising chemical solvent for separating CO2 from bio-syngas. For the newly developed novel solvent, ionic liquid (IL) has drawn significant attention as a substitute of conventional solvents due to its superior properties, such as negligible vapor pressure, high thermal stability, and tunable structure. Among many studied ILs, the superbase IL named 1, 8-diazabicyclo-[5,4,0]undec-7-ene imidazole ([HDBU][IM]) shows a very promising CO2 absorption capacity (4.41 mol-CO2/kg-IL), while the high viscosity is a critical issue to cope with. Herein, adding cosolvent was selected as the method to mild the viscosity problem and maintain a high level of CO2 absorption capacity. The dimethyl ethers of polyethylene glycol (DEPG) was selected as the cosolvent of superbase-derived IL [HDBU][IM], and the optimal mass ratio (IL: cosolvent) was identified at 2:1. The temperature effect was studied, showing the high CO2 absorption capacity is favored with low temperature. The effect of gases (CH4, N2) presented in the inlet gas other than CO2 was positive in terms of CO2 selectivity. The thermodynamic modeling agreed well (ARD < 2.37%) with the experimental results. The [HDBU][IM]-DEPG binary system is a promising candidate for separating CO2 from CH4 and N2, and more research will be conducted in the future. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy