SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gobbi C) "

Sökning: WFRF:(Gobbi C)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abazov, V. M., et al. (författare)
  • The upgraded DO detector
  • 2006
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 565:2, s. 463-537
  • Tidskriftsartikel (refereegranskat)abstract
    • The DO experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid -argon calorimeters and central muon detector, remaining from Run 1, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DO.
  •  
2.
  • Muehlenbein, MP, et al. (författare)
  • Traveller exposures to animals: a GeoSentinel analysis
  • 2020
  • Ingår i: Journal of travel medicine. - : Oxford University Press (OUP). - 1708-8305 .- 1195-1982. ; 27:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundHuman coexistence with other animals can result in both intentional and unintentional contact with a variety of mammalian and non-mammalian species. International travellers are at risk for such encounters; travellers risk injury, infection and possibly death from domestic and wild animal bites, scratches, licks and other exposures. The aim of the present analysis was to understand the diversity and distribution of animal-related exposures among international travellers.MethodsData from January 2007 through December 2018 from the GeoSentinel Surveillance Network were reviewed. Records were included if the exposure was non-migration travel with a diagnosis of an animal (dog, cat, monkey, snake or other) bite or other exposure (non-bite); records were excluded if the region of exposure was not ascertainable or if another, unrelated acute diagnosis was reported.ResultsA total of 6470 animal exposures (bite or non-bite) were included. The majority (71%) occurred in Asia. Travellers to 167 countries had at least one report of an animal bite or non-bite exposure. The majority (76%) involved dogs, monkeys and cats, although a wide range of wild and domestic species were involved. Almost two-thirds (62.6%) of 4395 travellers with information available did not report a pretravel consultation with a healthcare provider.ConclusionsMinimizing bites and other animal exposures requires education (particularly during pretravel consultations) and behavioral modification. These should be supplemented by the use of pre-exposure rabies vaccination for travellers to high-risk countries (especially to those with limited access to rabies immunoglobulin), as well as encouragement of timely (in-country) post-exposure prophylaxis for rabies and Macacine alphaherpesvirus 1 (herpesvirus B) when warranted.
  •  
3.
  •  
4.
  • Meier, S, et al. (författare)
  • Serum Glial Fibrillary Acidic Protein Compared With Neurofilament Light Chain as a Biomarker for Disease Progression in Multiple Sclerosis
  • 2023
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 80:3, s. 287-297
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a lack of validated biomarkers for disability progression independent of relapse activity (PIRA) in multiple sclerosis (MS).ObjectiveTo determine how serum glial fibrillary acidic protein (sGFAP) and serum neurofilament light chain (sNfL) correlate with features of disease progression vs acute focal inflammation in MS and how they can prognosticate disease progression.Design, Setting, and ParticipantsData were acquired in the longitudinal Swiss MS cohort (SMSC; a consortium of tertiary referral hospitals) from January 1, 2012, to October 20, 2022. The SMSC is a prospective, multicenter study performed in 8 centers in Switzerland. For this nested study, participants had to meet the following inclusion criteria: cohort 1, patients with MS and either stable or worsening disability and similar baseline Expanded Disability Status Scale scores with no relapses during the entire follow-up; and cohort 2, all SMSC study patients who had initiated and continued B-cell–depleting treatment (ie, ocrelizumab or rituximab).ExposuresPatients received standard immunotherapies or were untreated.Main Outcomes and MeasuresIn cohort 1, sGFAP and sNfL levels were measured longitudinally using Simoa assays. Healthy control samples served as the reference. In cohort 2, sGFAP and sNfL levels were determined cross-sectionally.ResultsThis study included a total of 355 patients (103 [29.0%] in cohort 1: median [IQR] age, 42.1 [33.2-47.6] years; 73 female patients [70.9%]; and 252 [71.0%] in cohort 2: median [IQR] age, 44.3 [33.3-54.7] years; 156 female patients [61.9%]) and 259 healthy controls with a median [IQR] age of 44.3 [36.3-52.3] years and 177 female individuals (68.3%). sGFAP levels in controls increased as a function of age (1.5% per year; P < .001), were inversely correlated with BMI (−1.1% per BMI unit; P = .01), and were 14.9% higher in women than in men (P = .004). In cohort 1, patients with worsening progressive MS showed 50.9% higher sGFAP levels compared with those with stable MS after additional sNfL adjustment, whereas the 25% increase of sNfL disappeared after additional sGFAP adjustment. Higher sGFAP at baseline was associated with accelerated gray matter brain volume loss (per doubling: 0.24% per year; P < .001) but not white matter loss. sGFAP levels remained unchanged during disease exacerbations vs remission phases. In cohort 2, median (IQR) sGFAP z scores were higher in patients developing future confirmed disability worsening compared with those with stable disability (1.94 [0.36-2.23] vs 0.71 [−0.13 to 1.73]; P = .002); this was not significant for sNfL. However, the combined elevation of z scores of both biomarkers resulted in a 4- to 5-fold increased risk of confirmed disability worsening (hazard ratio [HR], 4.09; 95% CI, 2.04-8.18; P < .001) and PIRA (HR, 4.71; 95% CI, 2.05-9.77; P < .001).Conclusions and RelevanceResults of this cohort study suggest that sGFAP is a prognostic biomarker for future PIRA and revealed its complementary potential next to sNfL. sGFAP may serve as a useful biomarker for disease progression in MS in individual patient management and drug development.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Benkert, P., et al. (författare)
  • Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study
  • 2022
  • Ingår i: The Lancet Neurology. - 1474-4422 .- 1474-4465. ; 21:3, s. 246-257
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Serum neurofilament light chain (sNfL) is a biomarker of neuronal damage that is used not only to monitor disease activity and response to drugs and to prognosticate disease course in people with multiple sclerosis on the group level. The absence of representative reference values to correct for physiological age-dependent increases in sNfL has limited the diagnostic use of this biomarker at an individual level. We aimed to assess the applicability of sNfL for identification of people at risk for future disease activity by establishing a reference database to derive reference values corrected for age and body-mass index (BMI). Furthermore, we used the reference database to test the suitability of sNfL as an endpoint for group-level comparison of effectiveness across disease-modifying therapies. Methods: For derivation of a reference database of sNfL values, a control group was created, comprising participants with no evidence of CNS disease taking part in four cohort studies in Europe and North America. We modelled the distribution of sNfL concentrations in function of physiological age-related increase and BMI-dependent modulation, to derive percentile and Z score values from this reference database, via a generalised additive model for location, scale, and shape. We tested the reference database in participants with multiple sclerosis in the Swiss Multiple Sclerosis Cohort (SMSC). We compared the association of sNfL Z scores with clinical and MRI characteristics recorded longitudinally to ascertain their respective disease prognostic capacity. We validated these findings in an independent sample of individuals with multiple sclerosis who were followed up in the Swedish Multiple Sclerosis registry. Findings: We obtained 10 133 blood samples from 5390 people (median samples per patient 1 [IQR 1–2] in the control group). In the control group, sNfL concentrations rose exponentially with age and at a steeper increased rate after approximately 50 years of age. We obtained 7769 samples from 1313 people (median samples per person 6·0 [IQR 3·0–8·0]). In people with multiple sclerosis from the SMSC, sNfL percentiles and Z scores indicated a gradually increased risk for future acute (eg, relapse and lesion formation) and chronic (disability worsening) disease activity. A sNfL Z score above 1·5 was associated with an increased risk of future clinical or MRI disease activity in all people with multiple sclerosis (odds ratio 3·15, 95% CI 2·35–4·23; p<0·0001) and in people considered stable with no evidence of disease activity (2·66, 1·08–6·55; p=0·034). Increased Z scores outperformed absolute raw sNfL cutoff values for diagnostic accuracy. At the group level, the longitudinal course of sNfL Z score values in people with multiple sclerosis from the SMSC decreased to those seen in the control group with use of monoclonal antibodies (ie, alemtuzumab, natalizumab, ocrelizumab, and rituximab) and, to a lesser extent, oral therapies (ie, dimethyl fumarate, fingolimod, siponimod, and teriflunomide). However, longitudinal sNfL Z scores remained elevated with platform compounds (interferons and glatiramer acetate; p<0·0001 for the interaction term between treatment category and treatment duration). Results were fully supported in the validation cohort (n=4341) from the Swedish Multiple Sclerosis registry. Interpretation: The use of sNfL percentiles and Z scores allows for identification of individual people with multiple sclerosis at risk for a detrimental disease course and suboptimal therapy response beyond clinical and MRI measures, specifically in people with disease activity-free status. Additionally, sNfL might be used as an endpoint for comparing effectiveness across drug classes in pragmatic trials. Funding: Swiss National Science Foundation, Progressive Multiple Sclerosis Alliance, Biogen, Celgene, Novartis, Roche. © 2022 Elsevier Ltd
  •  
9.
  • Disanto, G., et al. (författare)
  • Serum Neurofilament Light: A Biomarker of Neuronal Damage in Multiple Sclerosis
  • 2017
  • Ingår i: Annals of Neurology. - : Wiley. - 0364-5134. ; 81:6, s. 857-870
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Neurofilament light chains (NfL) are unique to neuronal cells, are shed to the cerebrospinal fluid (CSF), and are detectable at low concentrations in peripheral blood. Various diseases causing neuronal damage have resulted in elevated CSF concentrations. We explored the value of an ultrasensitive single-molecule array (Simoa) serum NfL (sNfL) assay in multiple sclerosis (MS). Methods: sNfL levels were measured in healthy controls (HC, n = 254) and two independent MS cohorts: (1) crosssectional with paired serum and CSF samples (n = 142), and (2) longitudinal with repeated serum sampling (n = 246, median follow-up = 3.1 years, interquartile range [IQR] = 2.0-4.0). We assessed their relation to concurrent clinical, imaging, and treatment parameters and to future clinical outcomes. Results: sNfL levels were higher in both MS cohorts than in HC (p < 0.001). We found a strong association between CSF NfL and sNfL (beta = 0.589, p < 0.001). Patients with either brain or spinal (43.4pg/ ml, IQR = 25.2-65.3) or both brain and spinal gadolinium-enhancing lesions (62.5pg/ml, IQR = 42.7-71.4) had higher sNfL than those without (29.6pg/ml, IQR = 20.9-41.8; beta = 1.461, p = 0.005 and beta = 1.902, p = 0.002, respectively). sNfL was independently associated with Expanded Disability Status Scale (EDSS) assessments (beta = 1.105, p < 0.001) and presence of relapses (beta = 1.430, p < 0.001). sNfL levels were lower under disease-modifying treatment (beta = 0.818, p = 0.003). Patients with sNfL levels above the 80th, 90th, 95th, 97.5th, and 99th HC-based percentiles had higher risk of relapses (97.5th percentile: incidence rate ratio = 1.94, 95% confidence interval [CI] = 1.21-3.10, p = 0.006) and EDSS worsening (97.5th percentile: OR = 2.41, 95% CI = 1.07-5.42, p = 0.034). Interpretation: These results support the value of sNfL as a sensitive and clinically meaningful blood biomarker to monitor tissue damage and the effects of therapies in MS.
  •  
10.
  • Synofzik, M., et al. (författare)
  • Mutant superoxide dismutase-1 indistinguishable from wild-type causes ALS
  • 2012
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP): Policy B - Oxford Open Option B. - 0964-6906 .- 1460-2083. ; 21:16, s. 3568-3574
  • Tidskriftsartikel (refereegranskat)abstract
    • A reason for screening amyotrophic lateral sclerosis (ALS) patients for mutations in the superoxide dismutase-1 (SOD1) gene is the opportunity to find novel mutations with properties that can give information on pathogenesis. A novel c.352Cgreater thanG (L117V) SOD1 mutation was found in two Syrian ALS families living in Europe. The disease showed unusually low penetrance and slow progression. In erythrocytes, the total SOD1 activity, as well as specific activity of the mutant protein, was equal in carriers of the mutation and family controls lacking SOD1 mutations. The structural stabilities of the L117V mutant and wild-type SOD1 under denaturing conditions were likewise equal, but considerably lower than that of murine SOD1. As analyzed with an ELISA specific for misfolded SOD1 species, no differences were found in the content of misfolded SOD1 protein between extracts of fibroblasts from wild-type controls and from an L117V patient. In contrast, elevated levels of misfolded SOD1 protein were found in fibroblasts from ALS patients carrying seven other mutations in the SOD1 gene. We conclude that mutations in SOD1 that result in a fully stable protein are associated with low disease penetrance for ALS and may be found in cases of apparently sporadic ALS. Wild-type human SOD1 is moderately stable, and was found here to be within the stability range of ALS-causing SOD1 variants, lending support to the hypothesis that wild-type SOD1 could be more generally involved in ALS pathogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy