SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Godson Catherine) "

Sökning: WFRF:(Godson Catherine)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adelani, David Ifeoluwa, et al. (författare)
  • MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity Recognition
  • 2022
  • Ingår i: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. - : Association for Computational Linguistics (ACL). ; , s. 4488-4508
  • Konferensbidrag (refereegranskat)abstract
    • African languages are spoken by over a billion people, but are underrepresented in NLP research and development. The challenges impeding progress include the limited availability of annotated datasets, as well as a lack of understanding of the settings where current methods are effective. In this paper, we make progress towards solutions for these challenges, focusing on the task of named entity recognition (NER). We create the largest human-annotated NER dataset for 20 African languages, and we study the behavior of state-of-the-art cross-lingual transfer methods in an Africa-centric setting, demonstrating that the choice of source language significantly affects performance. We show that choosing the best transfer language improves zero-shot F1 scores by an average of 14 points across 20 languages compared to using English. Our results highlight the need for benchmark datasets and models that cover typologically-diverse African languages.
  •  
2.
  • Börgeson, Emma, et al. (författare)
  • AICAR ameliorates high-fat diet-associated pathophysiology in mouse and ex vivo models, independent of adiponectin.
  • 2017
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 60:4, s. 729-739
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we aimed to evaluate the therapeutic potential of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMP-activated protein kinase, for ameliorating high-fat diet (HFD)-induced pathophysiology in mice. We also aimed to determine whether the beneficial effects of AICAR were dependent on adiponectin. Furthermore, human adipose tissue was used to examine the effect of AICAR ex vivo.Six-week-old male C57BL/6J wild-type and Adipoq (-/-) mice were fed a standard-fat diet (10% fat) or an HFD (60% fat) for 12weeks and given vehicle or AICAR (500μg/g) three times/week from weeks 4-12. Diet-induced pathophysiology was examined in mice after 11 weeks by IPGTT and after 12 weeks by flow cytometry and western blotting. Human adipose tissue biopsies from obese (BMI 35-50kg/m(2)) individuals were incubated with vehicle or AICAR (1mmol/l) for 6h at 37°C, after which inflammation was characterised by ELISA (TNF-α) and flow cytometry.AICAR attenuated adipose inflammation in mice fed an HFD, promoting an M1-to-M2 macrophage phenotype switch, while reducing infiltration of CD8(+) T cells. AICAR treatment of mice fed an HFD partially restored glucose tolerance and attenuated hepatic steatosis and kidney disease, as evidenced by reduced albuminuria (p<0.05), urinary H2O2 (p<0.05) and renal superoxide levels (p<0.01) in both wild-type and Adipoq (-/-) mice. AICAR-mediated protection occurred independently of adiponectin, as similar protection was observed in wild-type and Adipoq (-/-) mice. In addition, AICAR promoted an M1-to-M2 macrophage phenotype switch and reduced TNF-α production in tissue explants from obese human patients.AICAR may promote metabolic health and protect against obesity-induced systemic diseases in an adiponectin-independent manner. Furthermore, AICAR reduced inflammation in human adipose tissue explants, suggesting by proof-of-principle that the drug may reduce obesity-induced complications in humans.ClinicalTrials.gov NCT02322073.
  •  
3.
  • Martin, William P., et al. (författare)
  • Dietary restriction and medical therapy drive PPARα-regulated improvements in early diabetic kidney disease in male rats
  • 2022
  • Ingår i: Clinical science (London, England : 1979). - 1470-8736. ; 136:21, s. 1485-1511
  • Tidskriftsartikel (refereegranskat)abstract
    • The attenuation of diabetic kidney disease (DKD) by metabolic surgery is enhanced by pharmacotherapy promoting renal fatty acid oxidation (FAO). Using the Zucker Diabetic Fatty and Zucker Diabetic Sprague Dawley rat models of DKD, we conducted studies to determine if these effects could be replicated with a non-invasive bariatric mimetic intervention. Metabolic control and renal injury were compared in rats undergoing a dietary restriction plus medical therapy protocol (DMT; fenofibrate, liraglutide, metformin, ramipril, and rosuvastatin) and ad libitum-fed controls. The global renal cortical transcriptome and urinary 1H-NMR metabolomic profiles were also compared. Kidney cell type-specific and medication-specific transcriptomic responses were explored through in silico deconvolution. Transcriptomic and metabolomic correlates of improvements in kidney structure were defined using a molecular morphometric approach. The DMT protocol led to ∼20% weight loss, normalized metabolic parameters and was associated with reductions in indices of glomerular and proximal tubular injury. The transcriptomic response to DMT was dominated by changes in fenofibrate- and peroxisome proliferator-activated receptor-α (PPARα)-governed peroxisomal and mitochondrial FAO transcripts localizing to the proximal tubule. DMT induced urinary excretion of PPARα-regulated metabolites involved in nicotinamide metabolism and reversed DKD-associated changes in the urinary excretion of tricarboxylic acid (TCA) cycle intermediates. FAO transcripts and urinary nicotinamide and TCA cycle metabolites were moderately to strongly correlated with improvements in glomerular and proximal tubular injury. Weight loss plus pharmacological PPARα agonism is a promising means of attenuating DKD.
  •  
4.
  • Sandholm, Niina, et al. (författare)
  • Genome-wide meta-analysis and omics integration identifies novel genes associated with diabetic kidney disease
  • 2022
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 65:9, s. 1495-1509
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Diabetic kidney disease (DKD) is the leading cause of kidney failure and has a substantial genetic component. Our aim was to identify novel genetic factors and genes contributing to DKD by performing meta-analysis of previous genome-wide association studies (GWAS) on DKD and by integrating the results with renal transcriptomics datasets. Methods: We performed GWAS meta-analyses using ten phenotypic definitions of DKD, including nearly 27,000 individuals with diabetes. Meta-analysis results were integrated with estimated quantitative trait locus data from human glomerular (N=119) and tubular (N=121) samples to perform transcriptome-wide association study. We also performed gene aggregate tests to jointly test all available common genetic markers within a gene, and combined the results with various kidney omics datasets. Results: The meta-analysis identified a novel intronic variant (rs72831309) in the TENM2 gene associated with a lower risk of the combined chronic kidney disease (eGFR<60 ml/min per 1.73 m2) and DKD (microalbuminuria or worse) phenotype (p=9.8×10−9; although not withstanding correction for multiple testing, p>9.3×10−9). Gene-level analysis identified ten genes associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN–RESP18, GPR158, INIP–SNX30, LSM14A and MFF; p<2.7×10−6). Integration of GWAS with human glomerular and tubular expression data demonstrated higher tubular AKIRIN2 gene expression in individuals with vs without DKD (p=1.1×10−6). The lead SNPs within six loci significantly altered DNA methylation of a nearby CpG site in kidneys (p<1.5×10−11). Expression of lead genes in kidney tubules or glomeruli correlated with relevant pathological phenotypes (e.g. TENM2 expression correlated positively with eGFR [p=1.6×10−8] and negatively with tubulointerstitial fibrosis [p=2.0×10−9], tubular DCLK1 expression correlated positively with fibrosis [p=7.4×10−16], and SNX30 expression correlated positively with eGFR [p=5.8×10−14] and negatively with fibrosis [p<2.0×10−16]). Conclusions/interpretation: Altogether, the results point to novel genes contributing to the pathogenesis of DKD. Data availability: The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respectively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages (https://t1d.hugeamp.org/downloads.html; https://t2d.hugeamp.org/downloads.html; https://hugeamp.org/downloads.html). Graphical abstract: [Figure not available: see fulltext.]
  •  
5.
  • Sandholm, Niina, et al. (författare)
  • New susceptibility loci associated with kidney disease in type 1 diabetes
  • 2012
  • Ingår i: PLOS Genetics. - San Francisco, USA : Public Library of Science, PLOS. - 1553-7390 .- 1553-7404. ; 8:9, s. e1002921-
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genomewide association studies (GWAS) of T1D DN comprising similar to 2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 x 10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 x 10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-beta 1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 x 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
  •  
6.
  • Serhan, Charles N., et al. (författare)
  • The Atlas of Inflammation Resolution (AIR)
  • 2020
  • Ingår i: Molecular Aspects of Medicine. - : Elsevier. - 0098-2997 .- 1872-9452. ; 74
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute inflammation is a protective reaction by the immune system in response to invading pathogens or tissue damage. Ideally, the response should be localized, self-limited, and returning to homeostasis. If not resolved, acute inflammation can result in organ pathologies leading to chronic inflammatory phenotypes. Acute inflammation and inflammation resolution are complex coordinated processes, involving a number of cell types, interacting in space and time. The biomolecular complexity and the fact that several biomedical fields are involved, make a multi- and interdisciplinary approach necessary. The Atlas of Inflammation Resolution (AIR) is a web-based resource capturing an essential part of the state-of-the-art in acute inflammation and inflammation resolution research. The AIR provides an interface for users to search thousands of interactions, arranged in inter-connected multi-layers of process diagrams, covering a wide range of clinically relevant phenotypes. By mapping experimental data onto the AIR, it can be used to elucidate drug action as well as molecular mechanisms underlying different disease phenotypes. For the visualization and exploration of information, the AIR uses the Minerva platform, which is a well-established tool for the presentation of disease maps. The molecular details of the AIR are encoded using international standards. The AIR was created as a freely accessible resource, supporting research and education in the fields of acute inflammation and inflammation resolution. The AIR connects research communities, facilitates clinical decision making, and supports research scientists in the formulation and validation of hypotheses. The AIR is accessible through https://air.bio.informatik.uni-rostock.de.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (5)
konferensbidrag (1)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Groop, Leif (2)
Ahlqvist, Emma (2)
le Roux, Carel W (1)
Docherty, Neil G. (1)
Abdulmumin, Idris (1)
Beukman, Michael (1)
visa fler...
Alabi, Jesujoba O. (1)
Adeyemi, Mofetoluwa (1)
Yousuf, Oreen (1)
Abrahamsson, Sanna (1)
Klakow, Dietrich (1)
Nabende, Peter (1)
Gwadabe, Tajuddeen (1)
Dossou, Bonaventure ... (1)
Aremu, Anuoluwapo (1)
Ogayo, Perez (1)
Mukiibi, Jonathan (1)
Kalipe, Godson (1)
Mbaye, Derguene (1)
Tapo, Allahsera Augu ... (1)
Munkoh-Buabeng, Edwi ... (1)
Buzaaba, Happy (1)
Sibanda, Blessing (1)
Bukula, Andiswa (1)
Adelani, David Ifeol ... (1)
Neubig, Graham (1)
Ruder, Sebastian (1)
Rijhwani, Shruti (1)
Palen-Michel, Cheste ... (1)
Lignos, Constantine (1)
Muhammad, Shamsuddee ... (1)
Bamba Dione, Cheikh ... (1)
Mabuya, Rooweither (1)
Taylor, Amelia (1)
Kabore, Fatoumata (1)
Emezue, Chris Chinen ... (1)
Gitau, Catherine (1)
Koagne, Victoire M. (1)
Macucwa, Tebogo (1)
Marivate, Vukosi (1)
Mboning, Elvis (1)
Adewumi, Tosin (1)
Ahia, Orevaoghene (1)
Nakatumba-Nabende, J ... (1)
Mokono, Neo L. (1)
Ezeani, Ignatius (1)
Chukwuneke, Chiamaka (1)
Hacheme, Gilles Q. (1)
Ogundepo, Odunayo (1)
Ngoli, Tatiana Moteu (1)
visa färre...
Lärosäte
Göteborgs universitet (2)
Lunds universitet (2)
Karolinska Institutet (2)
Umeå universitet (1)
Luleå tekniska universitet (1)
Örebro universitet (1)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (5)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy