SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Goei R) "

Search: WFRF:(Goei R)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • van Cappellen, W., et al. (author)
  • Apertif: Phased array feeds for the Westerbork Synthesis Radio Telescope: System overview and performance characteristics
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Journal article (peer-reviewed)abstract
    • We describe the APERture Tile In Focus (Apertif) system, a phased array feed (PAF) upgrade of the Westerbork Synthesis Radio Telescope that transforms this telescope into a high-sensitivity, wide-field-of-view L-band imaging and transient survey instrument. Using novel PAF technology, up to 40 partially overlapping beams are formed on the sky simultaneously, significantly increasing the survey speed of the telescope. With this upgraded instrument, an imaging survey covering an area of 2300 deg2 is being performed that will deliver both continuum and spectral line datasets, of which the first data have been publicly released. In addition, a time domain transient and pulsar survey covering 15 000 deg2 is in progress. An overview of the Apertif science drivers, hardware, and software of the upgraded telescope is presented, along with its key performance characteristics.
  •  
2.
  • Adams, E. A. K., et al. (author)
  • First release of Apertif imaging survey data
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Journal article (peer-reviewed)abstract
    • Context. Apertif is a phased-array feed system for the Westerbork Synthesis Radio Telescope, providing forty instantaneous beams over 300 MHz of bandwidth. A dedicated survey program utilizing this upgrade started on 1 July 2019, with the last observations taken on 28 February 2022. The imaging survey component provides radio continuum, polarization, and spectral line data. Aims. Public release of data is critical for maximizing the legacy of a survey. Toward that end, we describe the release of data products from the first year of survey operations, through 30 June 2020. In particular, we focus on defining quality control metrics for the processed data products. Methods. The Apertif imaging pipeline, Apercal, automatically produces non-primary beam corrected continuum images, polarization images and cubes, and uncleaned spectral line and dirty beam cubes for each beam of an Apertif imaging observation. For this release, processed data products are considered on a beam-by-beam basis within an observation. We validate the continuum images by using metrics that identify deviations from Gaussian noise in the residual images. If the continuum image passes validation, we release all processed data products for a given beam. We apply further validation to the polarization and line data products and provide flags indicating the quality of those data products. Results. We release all raw observational data from the first year of survey observations, for a total of 221 observations of 160 independent target fields, covering approximately one thousand square degrees of sky. Images and cubes are released on a per beam basis, and 3374 beams (of 7640 considered) are released. The median noise in the continuum images is 41.4 uJy beam(-1), with a slightly lower median noise of 36.9 uJy beam(-1) in the Stokes V polarization image. The median angular resolution is 11.6 ''/sin delta. The median noise for all line cubes, with a spectral resolution of 36.6 kHz, is 1.6 mJy beam(-1), corresponding to a 3-sigma H i column density sensitivity of 1.8 x 10(20) atoms cm(-2) over 20 km s(-1) (for a median angular resolution of 24 '' x 15 ''). Line cubes at lower frequency have slightly higher noise values, consistent with the global RFI environment and overall Apertif system performance. We also provide primary beam images for each individual Apertif compound beam. The data are made accessible using a Virtual Observatory interface and can be queried using a variety of standard tools.
  •  
3.
  • Muller-Lissner, S A, et al. (author)
  • Interobserver agreement in defecography--an international study
  • 1998
  • In: Zeitschrift für Gastroenterologie. - 0044-2771. ; 36:4, s. 273-279
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Defecography is considered to be an essential investigation in the evaluation of functional anorectal disorders, but the agreement between observers from different clinical centers has never been evaluated. METHODS: 14 defecographic studies were selected aimed to cover the most relevant defecographic findings responsible for disordered defecation. Eight studies were considered unequivocal, but six were thought to be controversial. All were sent to the ten participants in Europe and the US (five proctosurgeons, three radiologists, two gastroenterologists). They evaluated the studies using a previously agreed upon questionnaire. Interobserver agreement was quantified by kappa statistics and by the proportions of positive and negative agreement as compared to chance agreement, respectively. RESULTS: Overall, only the completeness of rectal emptying and the presence of a rectocele achieved acceptable kappa values above 0.4. When restricting the evaluation to the studies considered to be unequivocal, agreement improved considerably and was moderate to good for all items describing the images (kappa 0.43-0.63). However, whether proctosurgery should be performed and whether defecography contributed to the management of the particular patient remained controversial with very low kappa. CONCLUSIONS: It is doubtful whether defecography contributes substantially to the management of patients with disordered defecation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view