SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Golan Irene) "

Sökning: WFRF:(Golan Irene)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chisari, Andrea, et al. (författare)
  • Glucose and Amino Acid Metabolic Dependencies Linked to Stemness and Metastasis in Different Aggressive Cancer Types
  • 2021
  • Ingår i: Frontiers in Pharmacology. - : Frontiers Media S.A.. - 1663-9812. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • Malignant cells are commonly characterised by being capable of invading tissue, growing self-sufficiently and uncontrollably, being insensitive to apoptosis induction and controlling their environment, for example inducing angiogenesis. Amongst them, a subpopulation of cancer cells, called cancer stem cells (CSCs) shows sustained replicative potential, tumor-initiating properties and chemoresistance. These characteristics make CSCs responsible for therapy resistance, tumor relapse and growth in distant organs, causing metastatic dissemination. For these reasons, eliminating CSCs is necessary in order to achieve long-term survival of cancer patients. New insights in cancer metabolism have revealed that cellular metabolism in tumors is highly heterogeneous and that CSCs show specific metabolic traits supporting their unique functionality. Indeed, CSCs adapt differently to the deprivation of specific nutrients that represent potentially targetable vulnerabilities. This review focuses on three of the most aggressive tumor types: pancreatic ductal adenocarcinoma (PDAC), hepatocellular carcinoma (HCC) and glioblastoma (GBM). The aim is to prove whether CSCs from different tumour types share common metabolic requirements and responses to nutrient starvation, by outlining the diverse roles of glucose and amino acids within tumour cells and in the tumour microenvironment, as well as the consequences of their deprivation. Beyond their role in biosynthesis, they serve as energy sources and help maintain redox balance. In addition, glucose and amino acid derivatives contribute to immune responses linked to tumourigenesis and metastasis. Furthermore, potential metabolic liabilities are identified and discussed as targets for therapeutic intervention.
  •  
2.
  • Garcia-Gomez, Pedro, et al. (författare)
  • NOX4 regulates TGF beta-induced proliferation and self-renewal in glioblastoma stem cells
  • 2022
  • Ingår i: Molecular Oncology. - : John Wiley & Sons. - 1574-7891 .- 1878-0261. ; 16:9, s. 1891-1912
  • Tidskriftsartikel (refereegranskat)abstract
    • Y Glioblastoma (GBM) is the most aggressive and common glioma subtype, with a median survival of 15 months after diagnosis. Current treatments have limited therapeutic efficacy; thus, more effective approaches are needed. The glioblastoma tumoural mass is characterised by a small cellular subpopulation - glioblastoma stem cells (GSCs) - that has been held responsible for glioblastoma initiation, cell invasion, proliferation, relapse and resistance to chemo- and radiotherapy. Targeted therapies against GSCs are crucial, as is understanding the molecular mechanisms that govern the GSCs. Transforming growth factor beta (TGF beta) signalling and reactive oxygen species (ROS) production are known to govern and regulate cancer stem cell biology. Among the differentially expressed genes regulated by TGF beta in a transcriptomic analysis of two different patient-derived GSCs, we found NADPH oxidase 4 (NOX4) as one of the top upregulated genes. Interestingly, when patient tissues were analysed, NOX4 expression was found to be higher in GSCs versus differentiated cells. A functional analysis of the role of NOX4 downstream of TGF beta in several patient-derived GSCs showed that TGF beta does indeed induce NOX4 expression and increases ROS production in a NOX4-dependent manner. NOX4 downstream of TGF beta regulates GSC proliferation, and NOX4 expression is necessary for TGF beta-induced expression of stem cell markers and of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), which in turn controls the cell's antioxidant and metabolic responses. Interestingly, overexpression of NOX4 recapitulates the effects induced by TGF beta in GSCs: enhanced proliferation, stemness and NRF2 expression. In conclusion, this work functionally establishes NOX4 as a key mediator of GSC biology.
  •  
3.
  • Gélabert, Caroline, et al. (författare)
  • Glutamine deprivation alters TGF-β signaling in hepatocellular carcinoma
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Metabolic reprogramming is one of the hallmarks of cancer. Glutamine is one of the most important nutrients that fuels the TCA cycle and therefore takes part in the production of energy. Glutamine is used as starting metabolite for the synthesis of nucleotides, fatty acids and nonessential amino acids. Since nutrients are uptaken from the blood stream, and considering the 3- dimensional state of solid tumors, access of nutrients is highly dependent on the location of individual cells within a tumor, which results in affecting their metabolic activity. This gives rise to two disctincts cell population: the ones that have access to nutrient and the ones that are nutrientdeprived. We studied the effect of the lack of glutamine by creating glutamine-resistent hepatocellular carcinoma cell lines chosen based on their epithelial (Hep3B) or mesenchymal phenotype (SNU-499 and HLF). We found that glutamine deprivation decreased the proliferation rate, clonogenicity and stemness frequency of the three cell lines but in a greater extent of the mesenchymal cells. Transcriptomic analysis performed in HLF cells showed that glutamine deprivation decreased the activation of signaling pathways involved in cell-cell junction, cellextracellular matrix interactions and decreased the expression of the hallmarks of epithelial-tomesenchymal transition. We therefore investigated the role of TGFβ, a master regulator of these three processes, by transcriptomic and functional analyses in epithelial (Hep3B) and mesenchymal cells (HLF). We found that the lack of glutamine strongly impared the activation of TGFβ signaling which correlated with an altered regulation of TGFβ target genes: the expression of mesenchymal genes was no longer induced by TGFβ while the epithelial genes were more strongly induced. Functional analyses showed that glutamine deprivation abolished the invasive capacities of HCCs and decreased cell adhesion. Altogehter, our results show that glutamine metabolism is  necessary to maintain a mesenchymal phenotype and to maintain an efficient TGFβ signaling in hepatocellularcarcinoma.
  •  
4.
  • Gélabert, Caroline, et al. (författare)
  • The long non-coding RNA LINC00707 interacts with Smad proteins to regulate TGFβ signaling and cancer cell invasion
  • 2023
  • Ingår i: Cell Communication and Signaling. - : BioMed Central (BMC). - 1478-811X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Long non-coding RNAs (lncRNAs) regulate cellular processes by interacting with RNAs or proteins. Transforming growth factor β (TGFβ) signaling via Smad proteins regulates gene networks that control diverse biological processes, including cancer cell migration. LncRNAs have emerged as TGFβ targets, yet, their mechanism of action and biological role in cancer remains poorly understood.Methods: Whole-genome transcriptomics identified lncRNA genes regulated by TGFβ. Protein kinase inhibitors and RNA-silencing, in combination with cDNA cloning, provided loss- and gain-of-function analyses. Cancer cell-based assays coupled to RNA-immunoprecipitation and protein screening sought mechanistic evidence. Functional validation of TGFβ-regulated lncRNAs was based on new transcriptomics and by combining RNAscope with immunohistochemical analysis in tumor tissue.Results: Transcriptomics of TGFβ signaling responses revealed down-regulation of the predominantly cytoplasmic long intergenic non-protein coding RNA 707 (LINC00707). Expression of LINC00707 required Smad and mitogen-activated protein kinase inputs. By limiting the binding of Krüppel-like factor 6 to the LINC00707 promoter, TGFβ led to LINC00707 repression. Functionally, LINC00707 suppressed cancer cell invasion, as well as key fibrogenic and pro-mesenchymal responses to TGFβ, as also attested by RNA-sequencing analysis. LINC00707 also suppressed Smad-dependent signaling. Mechanistically, LINC00707 interacted with and retained Smad proteins in the cytoplasm. Upon TGFβ stimulation, LINC00707 elimination allowed Smad accumulation in the nucleus. In vivo, LINC00707 expression was negatively correlated with Smad2 activation in tumor tissues.Conclusions: TGFβ signaling decreases LINC00707 expression, which facilitates Smad-dependent signaling, favoring cancer cell invasion.
  •  
5.
  • Golan, Irene, et al. (författare)
  • The TGF-β Family in Glioblastoma
  • 2024
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 25:2
  • Forskningsöversikt (refereegranskat)abstract
    • Members of the transforming growth factor beta (TGF-beta) family have been implicated in the biology of several cancers. In this review, we focus on the role of TGF beta and bone morphogenetic protein (BMP) signaling in glioblastoma. Glioblastoma (GBM) is the most common malignant brain tumor in adults; it presents at a median age of 64 years, but can occur at any age, including childhood. Unfortunately, there is no cure, and even patients undergoing current treatments (surgical resection, radiotherapy, and chemotherapy) have a median survival of 15 months. There is a great need to identify new therapeutic targets to improve the treatment of GBM patients. TGF-beta s signaling promotes tumorigenesis in glioblastoma, while BMPs suppress tumorigenic potential by inducing tumor cell differentiation. In this review, we discuss the actions of TGF-beta s and BMPs on cancer cells as well as in the tumor microenvironment, and their use in potential therapeutic intervention.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy