SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Goldberg Ronald) "

Sökning: WFRF:(Goldberg Ronald)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Florez, Jose C., et al. (författare)
  • Effects of Genetic Variants Previously Associated with Fasting Glucose and Insulin in the Diabetes Prevention Program
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Common genetic variants have been recently associated with fasting glucose and insulin levels in white populations. Whether these associations replicate in pre-diabetes is not known. We extended these findings to the Diabetes Prevention Program, a clinical trial in which participants at high risk for diabetes were randomized to placebo, lifestyle modification or metformin for diabetes prevention. We genotyped previously reported polymorphisms (or their proxies) in/near G6PC2, MTNR1B, GCK, DGKB, GCKR, ADCY5, MADD, CRY2, ADRA2A, FADS1, PROX1, SLC2A2, GLIS3, C2CD4B, IGF1, and IRS1 in 3,548 Diabetes Prevention Program participants. We analyzed variants for association with baseline glycemic traits, incident diabetes and their interaction with response to metformin or lifestyle intervention. We replicated associations with fasting glucose at MTNR1B (P<0.001), G6PC2 (P=0.002) and GCKR (P=0.001). We noted impaired beta-cell function in carriers of glucose-raising alleles at MTNR1B (P<0.001), and an increase in the insulinogenic index for the glucose-raising allele at G6PC2 (P<0.001). The association of MTNR1B with fasting glucose and impaired beta-cell function persisted at 1 year despite adjustment for the baseline trait, indicating a sustained deleterious effect at this locus. We also replicated the association of MADD with fasting proinsulin levels (P<0.001). We detected no significant impact of these variants on diabetes incidence or interaction with preventive interventions. The association of several polymorphisms with quantitative glycemic traits is replicated in a cohort of high-risk persons. These variants do not have a detectable impact on diabetes incidence or response to metformin or lifestyle modification in the Diabetes Prevention Program.
  •  
2.
  • Frej, Cecilia, et al. (författare)
  • A Shift in ApoM/S1P between HDL-Particles in Women with Type 1 Diabetes Mellitus Is Associated with Impaired Anti-Inflammatory Effects of the ApoM/S1P Complex
  • 2017
  • Ingår i: Arteriosclerosis, Thrombosis, and Vascular Biology. - 1079-5642. ; 37:6, s. 1194-1205
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective-Type 1 diabetes mellitus (T1D) patients have an increased risk of cardiovascular disease despite high levels of high-density lipoproteins (HDL). Apolipoprotein M (apoM) and its ligand sphingosine 1-phospate (S1P) exert many of the anti-inflammatory effects of HDL. We investigated whether apoM and S1P are altered in T1D and whether apoM and S1P are important for HDL functionality in T1D. Approach and Results-ApoM and S1P were quantified in plasma from 42 healthy controls and 89 T1D patients. HDL was isolated from plasma and separated into dense, medium-dense, and light HDL by ultracentrifugation. Primary human aortic endothelial cells were challenged with tumor necrosis factor-α in the presence or absence of isolated HDL. Proinflammatory adhesion molecules E-selectin and vascular cellular adhesion molecule-1 were quantified by flow cytometry. Activation of the S1P1-receptor was evaluated by analyzing downstream signaling targets and receptor internalization. There were no differences in plasma levels of apoM and S1P between controls and T1D patients, but the apoM/S1P complexes were shifted from dense to light HDL particles in T1D. ApoM/S1P in light HDL particles from women were less efficient in inhibiting expression of vascular cellular adhesion molecule-1 than apoM/S1P in denser particles. The light HDL particles were unable to activate Akt, whereas all HDL subfractions were equally efficient in activating Erk and receptor internalization. Conclusions-ApoM/S1P in light HDL particles were inefficient in inhibiting tumor necrosis factor-α-induced vascular cellular adhesion molecule-1 expression in contrast to apoM/S1P in denser HDL particles. T1D patients have a higher proportion of light particles and hence more dysfunctional HDL, which could contribute to the increased cardiovascular disease risk associated with T1D.
  •  
3.
  • Lindqvist, Ulla, et al. (författare)
  • Seven different assays of hyaluronan compared for clinical utility
  • 1992
  • Ingår i: Clinical Chemistry. - 0009-9147 .- 1530-8561. ; 38:1, s. 127-132
  • Tidskriftsartikel (refereegranskat)abstract
    • To compare six assays of hyaluronan (hyaluronic acid; HYA) in serum, developed in different laboratories, we analyzed 10 samples from each of three groups: healthy persons, patients with primary biliary cirrhosis, and patients with rheumatoid arthritis. All the assays are based on the use of affinity proteins specific for HYA, prepared from cartilage or brain tissue, and are analogous to RIA or enzyme immunoassay techniques. The assay results were of the same magnitude. Although statistical analysis indicated that the methods in some cases deviated significantly from one another, this variation was less than the physiological variation in the healthy population. Therefore, the results of clinical investigations in which the various methods have been used are comparable. The analyses have high specificity and sensitivity for primary biliary cirrhosis but are somewhat less suitable for detecting rheumatoid arthritis. A seventh laboratory, which obtained antibodies to HYA, used these in an RIA to analyze a separate series of serum specimens. Results were in agreement with those obtained by one of the other assays.
  •  
4.
  •  
5.
  • Pollin, Toni I., et al. (författare)
  • Genetic Modulation of Lipid Profiles following Lifestyle Modification or Metformin Treatment: The Diabetes Prevention Program
  • 2012
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 8:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.04-1x10(-17)). Except for total HDL particles (r = -0.03, P = 0.26), all components of the lipid profile correlated with the GRS (partial |r| = 0.07-0.17, P=5x10(-5)-1x10(-19)). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (beta = +0.87, SEE +/- 0.22 mg/dl/allele, P=8x10(-5), P-interaction = 0.02) in the lifestyle intervention group, but not in the placebo (beta = +0.20, SEE +/- 0.22 mg/dl/allele, P = 0.35) or metformin (beta = -0.03, SEE +/- 0.22 mg/dl/allele, P = 0.90; P-interaction = 0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (beta = +0.30, SEE +/- 0.012 ln nmol/L/allele, P = 0.01, P-interaction = 0.01) but not in the placebo (beta = 20.002, SEE +/- 0.008 ln nmol/L/allele, P = 0.74) or metformin (beta = +0.013, SEE +/- 0.008 nmol/L/allele, P = 0.12; P-interaction = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss.
  •  
6.
  • Varga, Tibor V., et al. (författare)
  • Comprehensive Analysis of Established Dyslipidemia-Associated Loci in the Diabetes Prevention Program
  • 2016
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 1942-325X .- 1942-3268. ; 9:6, s. 495-503
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We assessed whether 234 established dyslipidemia-associated loci modify the effects of metformin treatment and lifestyle intervention (versus placebo control) on lipid and lipid subfraction levels in the Diabetes Prevention Program randomized controlled trial. Methods and Results: We tested gene treatment interactions in relation to baseline-adjusted follow-up blood lipid concentrations (high-density lipoprotein [HDL] and low-density lipoprotein-cholesterol, total cholesterol, and triglycerides) and lipoprotein subfraction particle concentrations and size in 2993 participants with pre-diabetes. Of the previously reported single-nucleotide polymorphism associations, 32.5% replicated at P<0.05 with baseline lipid traits. Trait-specific genetic risk scores were robustly associated (3x10(-4)>P>1.1x10(-16)) with their respective baseline traits for all but 2 traits. Lifestyle modified the effect of the genetic risk score for large HDL particle numbers, such that each risk allele of the genetic risk scores was associated with lower concentrations of large HDL particles at follow-up in the lifestyle arm (beta=-0.11 mu mol/L per genetic risk scores risk allele; 95% confidence interval, -0.188 to -0.033; P=5x10(-3); P-interaction=1x10(-3) for lifestyle versus placebo), but not in the metformin or placebo arms (P>0.05). In the lifestyle arm, participants with high genetic risk had more favorable or similar trait levels at 1-year compared with participants at lower genetic risk at baseline for 17 of the 20 traits. Conclusions: Improvements in large HDL particle concentrations conferred by lifestyle may be diminished by genetic factors. Lifestyle intervention, however, was successful in offsetting unfavorable genetic loading for most lipid traits.
  •  
7.
  • Varga, Tibor V., et al. (författare)
  • Predictive utilities of lipid traits, lipoprotein subfractions and other risk factors for incident diabetes : A machine learning approach in the Diabetes Prevention Program
  • 2021
  • Ingår i: BMJ Open Diabetes Research and Care. - : BMJ. - 2052-4897. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Although various lipid and non-lipid analytes measured by nuclear magnetic resonance (NMR) spectroscopy have been associated with type 2 diabetes, a structured comparison of the ability of NMR-derived biomarkers and standard lipids to predict individual diabetes risk has not been undertaken in larger studies nor among individuals at high risk of diabetes. Research design and methods Cumulative discriminative utilities of various groups of biomarkers including NMR lipoproteins, related non-lipid biomarkers, standard lipids, and demographic and glycemic traits were compared for short-term (3.2 years) and long-term (15 years) diabetes development in the Diabetes Prevention Program, a multiethnic, placebo-controlled, randomized controlled trial of individuals with pre-diabetes in the USA (N=2590). Logistic regression, Cox proportional hazards model and six different hyperparameter-tuned machine learning algorithms were compared. The Matthews Correlation Coefficient (MCC) was used as the primary measure of discriminative utility. Results Models with baseline NMR analytes and their changes did not improve the discriminative utility of simpler models including standard lipids or demographic and glycemic traits. Across all algorithms, models with baseline 2-hour glucose performed the best (max MCC=0.36). Sophisticated machine learning algorithms performed similarly to logistic regression in this study. Conclusions NMR lipoproteins and related non-lipid biomarkers were associated but did not augment discrimination of diabetes risk beyond traditional diabetes risk factors except for 2-hour glucose. Machine learning algorithms provided no meaningful improvement for discrimination compared with logistic regression, which suggests a lack of influential latent interactions among the analytes assessed in this study. Trial registration number Diabetes Prevention Program: NCT00004992; Diabetes Prevention Program Outcomes Study: NCT00038727.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy