SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Goldstein Raymond) "

Sökning: WFRF:(Goldstein Raymond)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Brolies, Thomas W., et al. (författare)
  • Rosetta observations of solar wind interaction with the comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Rosetta spacecraft arrived at the comet 67P/Churyumov-Gerasimenko on August 6, 2014, which has made it possible to perform the first study of the solar wind interacting with the coma of a weakly outgassing comet. Aims. It is shown that the solar wind experiences large deflections (>45°) in the weak coma. The average ion velocity slows from the mass loading of newborn cometary ions, which also slows the interplanetary magnetic field (IMF) relative to the solar wind ions and subsequently creates a Lorentz force in the frame of the solar wind. The Lorentz force in the solar wind frame accelerates ions in the opposite direction of cometary pickup ion flow, and is necessary to conserve momentum. Methods. Data from the Ion and Electron Sensor are studied over several intervals of interest when significant solar wind deflection was observed. The deflections for protons and for He++ were compared with the flow of cometary pickup ions using the instrument's frame of reference. We then fit the data with a three-dimensional Maxwellian, and rotated the flow vectors into the Comet Sun Equatorial coordinate system, and compared the flow to the spacecraft's position and to the local IMF conditions. Results. Our observations show that the solar wind may be deflected in excess of 45° from the anti-sunward direction. Furthermore, the deflections change direction on a variable timescale. Solar wind protons are consistently more deflected than the He++. The deflections are not ordered by the spacecraft's position relative to the comet, but large changes in deflection are related to changes in the orthogonal IMF components
  •  
4.
  • Day, Thomas C., et al. (författare)
  • Cellular organization in lab-evolved and extant multicellular species obeys a maximum entropy law
  • 2022
  • Ingår i: eLIFE. - : eLife Sciences Publications. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The prevalence of multicellular organisms is due in part to their ability to form complex structures. How cells pack in these structures is a fundamental biophysical issue, underlying their functional properties. However, much remains unknown about how cell packing geometries arise, and how they are affected by random noise during growth - especially absent developmental programs. Here, we quantify the statistics of cellular neighborhoods of two different multicellular eukaryotes: lab-evolved 'snowflake' yeast and the green alga Volvox carteri. We find that despite large differences in cellular organization, the free space associated with individual cells in both organisms closely fits a modified gamma distribution, consistent with maximum entropy predictions originally developed for granular materials. This 'entropic' cellular packing ensures a degree of predictability despite noise, facilitating parent-offspring fidelity even in the absence of developmental regulation. Together with simulations of diverse growth morphologies, these results suggest that gamma-distributed cell neighborhood sizes are a general feature of multicellularity, arising from conserved statistics of cellular packing.
  •  
5.
  • Ekhtiari, Hamed, et al. (författare)
  • A methodological checklist for fMRI drug cue reactivity studies : development and expert consensus
  • 2022
  • Ingår i: Nature Protocols. - : Nature Portfolio. - 1754-2189 .- 1750-2799. ; 17:3, s. 567-595
  • Tidskriftsartikel (refereegranskat)abstract
    • Cue reactivity measured by functional magnetic resonance imaging is used in studies of substance-use disorders. This Consensus Statement is the result of a Delphi process to arrive at parameters that should be reported in describing these studies. Cue reactivity is one of the most frequently used paradigms in functional magnetic resonance imaging (fMRI) studies of substance use disorders (SUDs). Although there have been promising results elucidating the neurocognitive mechanisms of SUDs and SUD treatments, the interpretability and reproducibility of these studies is limited by incomplete reporting of participants characteristics, task design, craving assessment, scanning preparation and analysis decisions in fMRI drug cue reactivity (FDCR) experiments. This hampers clinical translation, not least because systematic review and meta-analysis of published work are difficult. This consensus paper and Delphi study aims to outline the important methodological aspects of FDCR research, present structured recommendations for more comprehensive methods reporting and review the FDCR literature to assess the reporting of items that are deemed important. Forty-five FDCR scientists from around the world participated in this study. First, an initial checklist of items deemed important in FDCR studies was developed by several members of the Enhanced NeuroImaging Genetics through Meta-Analyses (ENIGMA) Addiction working group on the basis of a systematic review. Using a modified Delphi consensus method, all experts were asked to comment on, revise or add items to the initial checklist, and then to rate the importance of each item in subsequent rounds. The reporting status of the items in the final checklist was investigated in 108 recently published FDCR studies identified through a systematic review. By the final round, 38 items reached the consensus threshold and were classified under seven major categories: Participants Characteristics, General fMRI Information, General Task Information, Cue Information, Craving Assessment Inside Scanner, Craving Assessment Outside Scanner and Pre- and Post-Scanning Considerations. The review of the 108 FDCR papers revealed significant gaps in the reporting of the items considered important by the experts. For instance, whereas items in the General fMRI Information category were reported in 90.5% of the reviewed papers, items in the Pre- and Post-Scanning Considerations category were reported by only 44.7% of reviewed FDCR studies. Considering the notable and sometimes unexpected gaps in the reporting of items deemed to be important by experts in any FDCR study, the protocols could benefit from the adoption of reporting standards. This checklist, a living document to be updated as the field and its methods advance, can help improve experimental design, reporting and the widespread understanding of the FDCR protocols. This checklist can also provide a sample for developing consensus statements for protocols in other areas of task-based fMRI.
  •  
6.
  • Goldstein, Raymond, et al. (författare)
  • Two years of solar wind and pickup ion measurements at comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S262-S267
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ion and Electron Sensor (IES) as well as other members of the Rosetta Plasma Consortium (RPC) on board the Rosetta spacecraft (S/C) measured the characteristics of the solar wind almost continuously since its arrival at 67P/Churyumov-Gerasimenko (CG) in 2014 August. An important process at a comet is the so-called pickup process in which a newly ionized atom or molecule begins gyrating about the interplanetary magnetic field, is accelerated in the process and is carried along with the solar wind. Within a month after comet arrival, while Rosetta was < 100 km from CG, we began to observe low-energy (< 20 eV) positive ions. We believe that these are newly formed from cometary neutrals near Rosetta and attracted to the negative S/C potential. These ions were in the early phase of pickup and had not yet reached the energy they would after at least one full gyration about the magnetic field. As CG increased its activity, the flux and energy of the measured pickup ions increased intermittently while the solar wind appeared intermittently as well. By about 2015 end of April, the solar wind had become very faint until it eventually disappeared from the IES field of view. We then began to see ions at the highest energy levels of IES, > 10 keV for a few days and then intermittently through the remainder of the mission, but lower energy (a few keV) pickup ions were also observed. As of 2016 early February, the solar wind reappeared more consistently. We believe that the disappearance of the solar wind in the IES field of view is the result of interaction with the pickup ions and the eventual formation of a cavity that excluded the solar wind.
  •  
7.
  • Hajra, Rajkumar, et al. (författare)
  • Cometary plasma response to interplanetary corotating interaction regions during 2016 June-September : a quantitative study by the Rosetta Plasma Consortium
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 480:4, s. 4544-4556
  • Tidskriftsartikel (refereegranskat)abstract
    • Four interplanetary corotating interaction regions (CIRs) were identified during 2016 June-September by the Rosetta Plasma Consortium (RPC) monitoring in situ the plasma environment of the comet 67P/Churyumov-Gerasimenko (67P) at heliocentric distances of similar to 3-3.8 au. The CIRs, formed in the interface region between low- and high-speed solar wind streams with speeds of similar to 320-400 km s(-1) and similar to 580-640 km s(-1), respectively, are characterized by relative increases in solar wind proton density by factors of similar to 13-29, in proton temperature by similar to 7-29, and in magnetic field by similar to 1-4 with respect to the pre-CIR values. The CIR boundaries are well defined with interplanetary discontinuities. Out of 10 discontinuities, four are determined to be forward waves and five are reverse waves, propagating at similar to 5-92 per cent of the magnetosonic speed at angles of similar to 20 degrees-87 degrees relative to ambient magnetic field. Only one is identified to be a quasi-parallel forward shock with magnetosonic Mach number of similar to 1.48 and shock normal angle of similar to 41 degrees. The cometary ionosphere response was monitored by Rosetta from cometocentric distances of similar to 4-30 km. A quiet time plasma density map was developed by considering dependences on cometary latitude, longitude, and cometocentric distance of Rosetta observations before and after each of the CIR intervals. The CIRs lead to plasma density enhancements of similar to 500-1000 per cent with respect to the quiet time reference level. Ionospheric modelling shows that increased ionization rate due to enhanced ionizing (>12-200 eV) electron impact is the prime cause of the large cometary plasma density enhancements during the CIRs. Plausible origin mechanisms of the cometary ionizing electron enhancements are discussed.
  •  
8.
  •  
9.
  • Nilsson, Hans, et al. (författare)
  • Birth of a comet magnetosphere : A spring of water ions
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 347:6220
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta mission shall accompany comet 67P/Churyumov-Gerasimenko from a heliocentric distance of >3.6 astronomical units through perihelion passage at 1.25 astronomical units, spanning low and maximum activity levels. Initially, the solar wind permeates the thin comet atmosphere formed from sublimation, until the size and plasma pressure of the ionized atmosphere define its boundaries: A magnetosphere is born. Using the Rosetta Plasma Consortium ion composition analyzer, we trace the evolution from the first detection of water ions to when the atmosphere begins repelling the solar wind (~3.3 astronomical units), and we report the spatial structure of this early interaction. The near-comet water population comprises accelerated ions (
  •  
10.
  • Ringers, Christa, et al. (författare)
  • Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia
  • 2023
  • Ingår i: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right noses, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, i.e., cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy