SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gollwitzer Christian) "

Search: WFRF:(Gollwitzer Christian)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Eberbeck, D., et al. (author)
  • Magneto-structural characterization of different kinds of magnetic nanoparticles
  • 2023
  • In: Journal of Magnetism and Magnetic Materials. - 0304-8853. ; 583
  • Journal article (peer-reviewed)abstract
    • Using well-established measurement techniques like transmission electron microscopy (TEM), dynamic light scattering (DLS), small and wide angle X-ray scattering (SAXS, WAXS), susceptometry, and magnetorelaxometry, the distribution of the physical and magnetic size (magnetic moments) and magnetic anisotropy of a variety of structurally different magnetic nanoparticle samples (MNPs) is analyzed and compared. A term which accounts for the presence of weak magnetic areas (WMAs) within the MNPs was introduced to the widespread analysis model for M(H) data, enabling a consistent interpretation of the data in most of the systems. A comparison of the size distributions as obtained for the physical and the magnetic diameter suggests a multidomain structure for three single core systems under investigation, in all probability evoked by the presence of a wustite phase, as identified by WAXS. Analyzing the relationship d < dm < dc between the average single core diameter d, the effective magnetic (domain) size dm and the cluster diameter dc quantitatively, two qualitatively different magnetic structures in multicore MNP (MCMNP) systems were identified: (i) The magnetic moments of single cores within the MCMNP of fluidMAG tend to build flux closure structures, driven by dipole–dipole interaction. (ii) The magnetic behavior of Resovist® was attributed to the presence of domain sizes of about 12 nm within MCMNP, exceeding the single core diameters of 5 nm. Thereby, WAXS revealed a bimodal crystallite size distribution suggesting a crystallite merging process within the MCMNP. The value of the effective magnetic moment of these MCMNP could be explained within the presented “random moment cluster model” (RMCM). We conclude that the combination of physical and magnetic structure parameters obtained from complementary measurement methods allows a reliable assessment of the magnetic structure of single and multicore MNPs.
  •  
2.
  • Grossmann, Igor, et al. (author)
  • Insights into the accuracy of social scientists' forecasts of societal change
  • 2023
  • In: Nature Human Behaviour. - : Springer Nature. - 2397-3374. ; 7, s. 484-501
  • Journal article (peer-reviewed)abstract
    • How well can social scientists predict societal change, and what processes underlie their predictions? To answer these questions, we ran two forecasting tournaments testing the accuracy of predictions of societal change in domains commonly studied in the social sciences: ideological preferences, political polarization, life satisfaction, sentiment on social media, and gender-career and racial bias. After we provided them with historical trend data on the relevant domain, social scientists submitted pre-registered monthly forecasts for a year (Tournament 1; N = 86 teams and 359 forecasts), with an opportunity to update forecasts on the basis of new data six months later (Tournament 2; N = 120 teams and 546 forecasts). Benchmarking forecasting accuracy revealed that social scientists' forecasts were on average no more accurate than those of simple statistical models (historical means, random walks or linear regressions) or the aggregate forecasts of a sample from the general public (N = 802). However, scientists were more accurate if they had scientific expertise in a prediction domain, were interdisciplinary, used simpler models and based predictions on prior data. How accurate are social scientists in predicting societal change, and what processes underlie their predictions? Grossmann et al. report the findings of two forecasting tournaments. Social scientists' forecasts were on average no more accurate than those of simple statistical models.
  •  
3.
  • Minelli, Caterina, et al. (author)
  • Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles
  • 2022
  • In: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 14, s. 4690-4704
  • Journal article (peer-reviewed)abstract
    • We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles.
  •  
4.
  • Pan, Xuefeng, et al. (author)
  • Poly(ionic liquid) nanovesicles via polymerization induced self-assembly and their stabilization of Cu nanoparticles for tailored CO2 electroreduction
  • 2023
  • In: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797 .- 1095-7103. ; 637, s. 408-420
  • Journal article (peer-reviewed)abstract
    • Herein, we report a straightforward, scalable synthetic route towards poly(ionic liquid) (PIL) homopolymer nanovesicles (NVs) with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm via one-step free radical polymerization induced self-assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs’ internal morphology is studied in detail by coarse-grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are in situ functionalized with ultra-small (1 ∼ 3 nm in size) copper nanoparticles (CuNPs) and employed as electrocatalysts for CO2 electroreduction. The composite electrocatalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products (e.g., CH4), compared to the pristine CuNPs. This enhancement is attributed to the strong electronic interactions between the CuNPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO2 conversion to C1 products.
  •  
5.
  • Phung, Nga, et al. (author)
  • Photoprotection in metal halide perovskites by ionic defect formation
  • 2022
  • In: Joule. - : Elsevier BV. - 2542-4351. ; 6:9, s. 2152-2174
  • Journal article (peer-reviewed)abstract
    • Photostability is critical for long-term solar cell operation. While light-triggered defects are usually reported as evidence of material degradation, we reveal that the formation of certain defects in metal halide perovskites is crucial for protection against intense or prolonged light exposure. We identify an inherent self-regulating cycle of formation and recovery of ionic defects under light exposure that mitigates the overheating of the lattice due to hot carrier cooling, which allows exposure to several thousand suns without degrading. The excess energy instead dissipates by forming defects, which in turn alters the optoelectronic properties of the absorber, resulting in a temporary reduction of photon absorption. Defects gradually recover to restore the original optoelectronic properties of the absorber. Photoprotection is a key feature for the photostability in plants. Thus, finding a protection mechanism in metal halide perovskites similar to those in nature is encouraging for the development of long-term sustainable solar cells.
  •  
6.
  • Schavkan, Alexander, et al. (author)
  • Number concentration of gold nanoparticles in suspension : SAXS and spICPMS as traceable methods compared to laboratory methods
  • 2019
  • In: Nanomaterials. - : MDPI AG. - 2079-4991. ; 9:4
  • Journal article (peer-reviewed)abstract
    • The industrial exploitation of high value nanoparticles is in need of robust measurement methods to increase the control over product manufacturing and to implement quality assurance. InNanoPart, a European metrology project responded to these needs by developing methods for the measurement of particle size, concentration, agglomeration, surface chemistry and shell thickness. This paper illustrates the advancements this project produced for the traceable measurement of nanoparticle number concentration in liquids through small angle X-ray scattering (SAXS) and single particle inductively coupled plasma mass spectrometry (spICPMS). It also details the validation of a range of laboratory methods, including particle tracking analysis (PTA), dynamic light scattering (DLS), differential centrifugal sedimentation (DCS), ultraviolet visible spectroscopy (UV-vis) and electrospray-differential mobility analysis with a condensation particle counter (ES-DMA-CPC). We used a set of spherical gold nanoparticles with nominal diameters between 10 nm and 100 nm and discuss the results from the various techniques along with the associated uncertainty budgets.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view