SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Golsteijn Laura) "

Sökning: WFRF:(Golsteijn Laura)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brandmaier, Stefan, et al. (författare)
  • The QSPR-THESAURUS : The Online Platform of the CADASTER Project
  • 2014
  • Ingår i: ATLA (Alternatives to Laboratory Animals). - : SAGE Publications. - 0261-1929. ; 42:1, s. 13-24
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the CADASTER project (CAse Studies on the Development and Application of in Silico Techniques for Environmental Hazard and Risk Assessment) was to exemplify REACH-related hazard assessments for four classes of chemical compound, namely, polybrominated diphenylethers, per and polyfluorinated compounds, (benzo)triazoles, and musks and fragrances. The QSPR-THESAURUS website (http: / /qspr-thesaurus.eu) was established as the project's online platform to upload, store, apply, and also create, models within the project. We overview the main features of the website, such as model upload, experimental design and hazard assessment to support risk assessment, and integration with other web tools, all of which are essential parts of the QSPR-THESAURUS.
  •  
2.
  • Golsteijn, Laura, et al. (författare)
  • Assessing predictive uncertainty in comparative toxicity potentials of triazoles
  • 2014
  • Ingår i: Environmental Toxicology and Chemistry. - : Wiley. - 0730-7268 .- 1552-8618. ; 33:2, s. 293-301
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative toxicity potentials (CTPs) quantify the potential ecotoxicological impacts of chemicals per unit of emission. They are the product of a substance's environmental fate, exposure, and hazardous concentration. When empirical data are lacking, substance properties can be predicted. The goal of the present study was to assess the influence of predictive uncertainty in substance property predictions on the CTPs of triazoles. Physicochemical and toxic properties were predicted with quantitative structure-activity relationships (QSARs), and uncertainty in the predictions was quantified with use of the data underlying the QSARs. Degradation half-lives were based on a probability distribution representing experimental half-lives of triazoles. Uncertainty related to the species' sample size that was present in the prediction of the hazardous aquatic concentration was also included. All parameter uncertainties were treated as probability distributions, and propagated by Monte Carlo simulations. The 90% confidence interval of the CTPs typically spanned nearly 4 orders of magnitude. The CTP uncertainty was mainly determined by uncertainty in soil sorption and soil degradation rates, together with the small number of species sampled. In contrast, uncertainty in species-specific toxicity predictions contributed relatively little. The findings imply that the reliability of CTP predictions for the chemicals studied can be improved particularly by including experimental data for soil sorption and soil degradation, and by developing toxicity QSARs for more species. (c) 2013 SETAC
  •  
3.
  •  
4.
  • Iqbal, Muhammad Sarfraz, et al. (författare)
  • Understanding quantitative structure-property relationships uncertainty in environmental fate modeling
  • 2013
  • Ingår i: Environmental Toxicology and Chemistry. - : Wiley. - 0730-7268 .- 1552-8618. ; 32:5, s. 1069-1076
  • Tidskriftsartikel (refereegranskat)abstract
    • In cases in which experimental data on chemical-specific input parameters are lacking, chemical regulations allow the use of alternatives to testing, such as in silico predictions based on quantitative structure–property relationships (QSPRs). Such predictions are often given as point estimates; however, little is known about the extent to which uncertainties associated with QSPR predictions contribute to uncertainty in fate assessments. In the present study, QSPR-induced uncertainty in overall persistence (POV) and long-range transport potential (LRTP) was studied by integrating QSPRs into probabilistic assessments of five polybrominated diphenyl ethers (PBDEs), using the multimedia fate model Simplebox. The uncertainty analysis considered QSPR predictions of the fate input parameters' melting point, water solubility, vapor pressure, organic carbon–water partition coefficient, hydroxyl radical degradation, biodegradation, and photolytic degradation. Uncertainty in POV and LRTP was dominated by the uncertainty in direct photolysis and the biodegradation half-life in water. However, the QSPRs developed specifically for PBDEs had a relatively low contribution to uncertainty. These findings suggest that the reliability of the ranking of PBDEs on the basis of POV and LRTP can be substantially improved by developing better QSPRs to estimate degradation properties. The present study demonstrates the use of uncertainty and sensitivity analyses in nontesting strategies and highlights the need for guidance when compounds fall outside the applicability domain of a QSPR.
  •  
5.
  • Sahlin, Ullrika, et al. (författare)
  • Arguments for considering uncertainty in QSAR predictions in hazard and risk assessments
  • 2013
  • Ingår i: ATLA (Alternatives to Laboratory Animals). - : SAGE Publications. - 0261-1929. ; 41:1, s. 91-110
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical regulation allows non-in vivo testing (i.e. in silico-derived and in vitro-derived) information to replace experimental values from in vivo studies in hazard and risk assessments. Although non-in vitro testing information on chemical activities or properties is subject to added uncertainty as compared to in vivo testing information, this uncertainty is commonly not (fully) taken into account. Considering uncertainty in predictions from quantitative structure-activity relationships (QSARs), which are a form of non-in vivo testing information, may improve the way that QSARs support chemical safety assessment under the EU Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) system. We argue that it is useful to consider uncertainty in QSAR predictions, as it: a) supports rational decision-making; b) facilitates cautious risk management; c) informs uncertainty analysis in probabilistic risk assessment; d) may aid the evaluation of QSAR predictions in weight-of-evidence approaches; and e) provides a probabilistic model to verify the experimental data used in risk assessment. The discussion is illustrated by using case studies of QSAR integrated hazard and risk assessment from the EU-financed CADASTER project.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy