SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gonoskov Arkady 1984) "

Sökning: WFRF:(Gonoskov Arkady 1984)

  • Resultat 1-10 av 53
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Efimenko, E., et al. (författare)
  • Extreme plasma states in laser-governed vacuum breakdown
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Triggering vacuum breakdown at laser facility is expected to provide rapid electron-positron p air production for studies in laboratory astrophysics and fundamental physics. However, the density of the produced plasma may cease to increase at a relativistic critical density, when the plasma becomes opaque. Here, we identify the opportunity of breaking this limit using optimal beam configuration of petawatt-class lasers. Tightly focused laser fields allow generating plasma in a small focal volume much less than λ 3 and creating extreme plasma states in terms of density and produced currents. These states can be regarded to be a new object of nonlinear plasma physics. Using 3D QED-PIC simulations we demonstrate a possibility of reaching densities over 10 25 cm -3, which is an order of magnitude higher than expected earlier. Controlling the process via initial target parameters provides an opportunity to reach the discovered plasma states at the upcoming laser facilities.
  •  
2.
  • Mackenroth, Felix, 1984, et al. (författare)
  • Chirped-Standing-Wave Acceleration of Ions with Intense Lasers
  • 2016
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 117:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a novel mechanism for ion acceleration based on the guided motion of electrons from a thin layer. The electron motion is locked to the moving nodes of a standing wave formed by a chirped laser pulse reflected from a mirror behind the layer. This provides a stable longitudinal field of charge separation, thus giving rise to chirped-standing-wave acceleration of the residual ions of the layer. We demonstrate, both analytically and numerically, that stable proton beams, with energy spectra peaked around 100 MeV, are feasible for pulse energies at the level of 10 J. Moreover, a scaling law for higher laser intensities and layer densities is presented, indicating stable GeV-level energy gains of dense ion bunches, for soon-to-be-available laser intensities.
  •  
3.
  • Mackenroth, Felix, 1984, et al. (författare)
  • Reaching high flux in laser-driven ion acceleration
  • 2017
  • Ingår i: European Physical Journal D. - : Springer Science and Business Media LLC. - 1434-6079 .- 1434-6060. ; 71:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the first experimental observation of laser-driven ion acceleration, optimizing the ion beams’ characteristics aiming at levels enabling various key applications has been the primary challenge driving technological and theoretical studies. However, most of the proposed acceleration mechanisms and strategies identified as promising, are focused on providing ever higher ion energies. On the other hand, the ions’ energy is only one of several parameters characterizing the beams’ aptness for any desired application. For example, the usefulness of laser-based ion sources for medical applications such as the renowned hadron therapy, and potentially many more, can also crucially depend on the number of accelerated ions or their flux at a required level of ion energies. In this work, as an example of an up to now widely disregarded beam characteristic, we use theoretical models and numerical simulations to systematically examine and compare the existing proposals for laser-based ion acceleration in their ability to provide high ion fluxes at varying ion energy levels.
  •  
4.
  • Magnusson, Joel, 1991, et al. (författare)
  • Prospects for laser-driven ion acceleration through controlled displacement of electrons by standing waves
  • 2018
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 25:5
  • Tidskriftsartikel (refereegranskat)abstract
    • During the interaction of intense femtosecond laser pulses with various targets, the natural mechanisms of laser energy transformation inherently lack temporal control and thus commonly do not provide opportunities for a controlled generation of a well-collimated, high-charge beam of ions with a given energy of particular interest. In an effort to alleviate this problem, it was recently proposed that the ions can be dragged by an electron bunch trapped in a controllably moving potential well formed by laser radiation. Such standing-wave acceleration (SWA) can be achieved through reflection of a chirped laser pulse from a mirror, which has been formulated as the concept of chirped-standing-wave acceleration (CSWA). Here, we analyse general feasibility aspects of the SWA approach and demonstrate its reasonable robustness against field structure imperfections, such as those caused by misalignment, ellipticity, and limited contrast. Using this, we also identify prospects and limitations of the CSWA concept.
  •  
5.
  • Svensson, K., et al. (författare)
  • Transverse expansion of the electron sheath during laser acceleration of protons
  • 2017
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 24:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The transverse expansion of the electrostatic sheath during target normal sheath acceleration of protons is investigated experimentally using a setup with two synchronized laser pulses. With the pulses spatially separated by less than three laser spot diameters, the resulting proton beam profiles become elliptical. By introducing a small intensity difference between the two pulses, the ellipses are rotated by a certain angle, except if the spatial separation of the two laser pulses is in the plane of incidence. The rotation angle is shown to depend on the relative intensity of the two pulses. The observed effects are found to require high temporal contrasts of the laser pulses. A simple model describing how the transverse shape of the electron sheath on the rear of the target depends on the relative intensity between the foci is presented. The model assumptions are verified, and the unknown dependence of the transverse extents of the sheaths are estimated self-consistently through a series of high resolution, two-dimensional particle-in-cell simulations. The results predicted by the model are also shown to be consistent with those obtained from the experiment.
  •  
6.
  • Aurand, B., et al. (författare)
  • Manipulation of the spatial distribution of laser-accelerated proton beams by varying the laser intensity distribution
  • 2016
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 23:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a study of the spatial profile of proton beams produced through target normal sheath acceleration using flat target foils and changing the laser intensity distribution on the target front surface. This is done by either defocusing a single laser pulse or by using a split-pulse setup and irradiating the target with two identical laser pulses with variable spatial separation. The resulting proton beam profile and the energy spectrum are recorded as functions of the focal spot size of the single laser pulse and of the separation between the two pulses. A shaping of the resulting proton beam profile, related to both an increase in flux of low-energy protons in the target normal direction and a decrease in their divergence, in one or two dimensions, is observed. The results are explained by simple modelling of rear surface sheath field expansion, ionization, and projection of the resulting proton beam.
  •  
7.
  • Bashinov, A. V., et al. (författare)
  • New horizons for extreme light physics with mega-science project XCELS
  • 2014
  • Ingår i: European Physical Journal: Special Topics. - : Springer Science and Business Media LLC. - 1951-6401 .- 1951-6355. ; 223:6, s. 1105-1112
  • Forskningsöversikt (refereegranskat)abstract
    • A short review of the Russian mega-science project XCELS and scientific problems to be solved are presented. We discuss the origin of multi-beam design to attain the highest field magnitude at optimal focusing. Then, we formulate particular physical problems of fundamental interest that can be solved within this project.
  •  
8.
  • Bashinov, A. V., et al. (författare)
  • Towards attosecond-scale highly directed GeV gamma-ray sources with multipetawatt-class lasers
  • 2017
  • Ingår i: Journal of Optics. - : IOP Publishing. - 2040-8978 .- 2040-8986. ; 19:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider a possibility of constructing a gamma-ray source based on the multibeam configuration of a multipetawatt laser system which we simulate using a converging dipole wave. It is shown that such a configuration of fields allows the generation of gamma radiation with narrow directivity of about 1 mrad in the form of pulse trains or isolated pulses on the attosecond timescale. The influence of quantum electrodynamic cascade development on the parameters of generated gamma bursts is studied.
  •  
9.
  • Bastrakov, S., et al. (författare)
  • Performance aspects of collocated and staggered grids for particle-in-cell plasma simulation
  • 2017
  • Ingår i: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). - Cham : Springer International Publishing. - 1611-3349 .- 0302-9743. - 9783319629315 ; 10421, s. 94-100
  • Konferensbidrag (refereegranskat)abstract
    • We present a computational comparison of collocated and staggered uniform grids for particle-in-cell plasma simulation. Both types of grids are widely used, and numerical properties of the corresponding solvers are well-studied. However, for large-scale simulations performance is also an important factor, which is the focus of this paper. We start with a baseline implementation, apply widely-used techniques for performance optimization and measure their efficacy for both grids on a high-end Xeon CPU and a second-generation Xeon Phi processor. For the optimized version the collocated grid outperforms the staggered one by about 1.5x on both Xeon and Xeon Phi. The speedup on the Xeon Phi processor compared to Xeon is about 1.9x.
  •  
10.
  • Bhadoria, Shikha, 1991, et al. (författare)
  • Mapping the power-law decay of high-harmonic spectra from few-cycle laser-solid interactions
  • 2022
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 29
  • Tidskriftsartikel (refereegranskat)abstract
    • Visible or near infrared light can be manipulated to produce bursts of coherent extreme ultraviolet or x rays via the relativistic high-order harmonic generation process when a laser irradiates a solid plasma target. The intensity of the spectral components of the reflected signal decays with the increase in harmonic order and the efficiency of this non-linear process largely hinges on how prompt this decay is. This is governed by the conditions of the laser-plasma interaction for which various models have been proposed. At relativistic intensities, a spectrum exhibiting a power-law decay with an exponent of 8/3 or 4/3 is often stated. Here, we analyze the dependence of this exponent on interaction parameters, including the angle of incidence, the carrier envelope phase, intensity of the laser, and the pre-plasma length, and discuss opportunities for optimization. Our simulations show that, rather than there being one universal exponent, the spectral decay is a continuous function of the laser-plasma interaction parameters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 53

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy