SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Goraj Zdobyslaw) "

Sökning: WFRF:(Goraj Zdobyslaw)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Seitz, Arne, et al. (författare)
  • Concept validation study for fuselage wake-filling propulsion integration
  • 2018
  • Ingår i: 31st Congress of the International Council of the Aeronautical Sciences, ICAS 2018.
  • Konferensbidrag (refereegranskat)abstract
    • The present paper provides an overview together with intermediate results of the work-in-progress research performed in the EC-funded Horizon 2020 collaborative project CENTRELINE (“ConcEpt validatioN sTudy foR fusElage wake-filLIng propulsioN integration”), aiming at demonstrating the proof of concept for a groundbreaking approach to synergistic propulsion-airframe integration, the so-called Propulsive Fuselage Concept (PFC). The concept features a turbo-electrically driven propulsive device integrated in the very aft-section of the fuselage, dedicated to the purpose of fuselage wake-filling. Currently at TRL 1-2, CENTRELINE's target is to mature the technological key features of the PFC to TRL 3-4. The core of the targeted proof-of-concept is formed by two experimental test campaigns supported by high-fidelity 3D numerical simulation and integrated multidisciplinary design optimisation techniques for aerodynamics, aero-structures as well as the energy and propulsion system.
  •  
2.
  • Seitz, Arne, et al. (författare)
  • Proof of concept study for fuselage boundary layer ingesting propulsion
  • 2021
  • Ingår i: Aerospace. - : MDPI AG. - 2226-4310. ; 8:1, s. 1-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Key results from the EU H2020 project CENTRELINE are presented. The research activities undertaken to demonstrate the proof of concept (technology readiness level-TRL 3) for the so-called propulsive fuselage concept (PFC) for fuselage wake-filling propulsion integration are discussed. The technology application case in the wide-body market segment is motivated. The developed performance bookkeeping scheme for fuselage boundary layer ingestion (BLI) propulsion integration is reviewed. The results of the 2D aerodynamic shape optimization for the bare PFC configuration are presented. Key findings from the high-fidelity aero-numerical simulation and aerodynamic validation testing, i.e., the overall aircraft wind tunnel and the BLI fan rig test campaigns, are discussed. The design results for the architectural concept, systems integration and electric machinery pre-design for the fuselage fan turbo-electric power train are summarized. The design and performance implications on the main power plants are analyzed. Conceptual design solutions for the mechanical and aerostructural integration of the BLI propulsive device are introduced. Key heuristics deduced for PFC conceptual aircraft design are presented. Assessments of fuel burn, NOx emissions, and noise are presented for the PFC aircraft and benchmarked against advanced conventional technology for an entry-into-service in 2035. The PFC design mission fuel benefit based on 2D optimized PFC aero-shaping is 4.7%.
  •  
3.
  • Sobron, Alejandro, 1990- (författare)
  • On Subscale Flight Testing : Applications in Aircraft Conceptual Design
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Downscaled physical models, also referred to as subscale models, have played an essential role in the investigation of the complex physics of flight until the recent disruption of numerical simulation. Despite the fact that improvements in computational methods are slowly pushing experimental techniques towards a secondary role as verification or calibration tools, real-world testing of physical prototypes still provides an unmatched confidence. Physical models are very effective at revealing issues that are sometimes not correctly identified in the virtual domain, and hence can be a valuable complement to other design tools. But traditional wind-tunnel testing cannot always meet all of the requirements of modern aeronautical research and development. It is nowadays too expensive to use these scarce facilities to explore different design iterations during the initial stages of aircraft development, or to experiment with new and immature technologies.Testing of free-flight subscale models, referred to as Subscale Flight Testing (SFT), could offer an affordable and low-risk alternative for complementing conventional techniques with both qualitative and quantitative information. The miniaturisation of mechatronic systems, the advances in rapid-prototyping techniques and power storage, as well as new manufacturing methods, currently enable the development of sophisticated test objects at scales that were impractical some decades ago. Moreover, the recent boom in the commercial drone industry has driven a quick development of specialised electronics and sensors, which offer nowadays surprising capabilities at competitive prices. These recent technological disruptions have significantly altered the cost-benefit function of SFT and it is necessary to re-evaluate its potential in the contemporary aircraft development context.This thesis aims to increase the comprehension and knowledge of the SFT method in order to define a practical framework for its use in aircraft design; focusing on low-cost, short-time solutions that don’t require more than a small organization and few resources. This objective is approached from a theoretical point of view by means of an analysis of the physical and practical limitations of the scaling laws; and from an empirical point of view by means of field experiments aimed at identifying practical needs for equipment, methods, and tools. A low-cost data acquisition system is developed and tested; a novel method for semi-automated flight testing in small airspaces is proposed; a set of tools for analysis and visualisation of flight data is presented; and it is also demonstrated that it is possible to explore and demonstrate new technology using SFT with a very limited amount of economic and human resources. All these, together with a theoretical review and contextualisation, contribute to increasing the comprehension and knowledge of the SFT method in general, and its potential applications in aircraft conceptual design in particular.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy