SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gorre Nagaraju) "

Sökning: WFRF:(Gorre Nagaraju)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adhikari, Deepak, et al. (författare)
  • Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes
  • 2012
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 21:11, s. 2476-2484
  • Tidskriftsartikel (refereegranskat)abstract
    • Mammalian oocytes are arrested at the prophase of meiosis I during fetal or postnatal development, and the meiosis is resumed by the preovulatory surge of luteinizing hormone. The in vivo functional roles of cyclin-dependent kinases (Cdks) during the resumption of meiosis in mammalian oocytes are largely unknown. Previous studies have shown that deletions of Cdk3, Cdk4 or Cdk6 in mice result in viable animals with normal oocyte maturation, indicating that these Cdks are not essential for the meiotic maturation of oocytes. In addition, conventional knockout of Cdk1 and Cdk2 leads to embryonic lethality and postnatal follicular depletion, respectively, making it impossible to study the functions of Cdk1 and Cdk2 in oocyte meiosis. In this study, we generated conditional knockout mice with oocyte-specific deletions of Cdk1 and Cdk2. We showed that the lack of Cdk1, but not of Cdk2, leads to female infertility due to a failure of the resumption of meiosis in the oocyte. Re-introduction of Cdk1 mRNA into Cdk1-null oocytes largely resumed meiosis. Thus, Cdk1 is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. We also found that Cdk1 maintains the phosphorylation status of protein phosphatase 1 and lamin A/C in oocytes in order for meiosis resumption to occur.
  •  
2.
  • Adhikari, Deepak, et al. (författare)
  • Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles
  • 2009
  • Ingår i: Molecular human reproduction. - : Oxford University Press. - 1360-9947 .- 1460-2407. ; 15:12, s. 765-770
  • Tidskriftsartikel (refereegranskat)abstract
    • To maintain the length of reproductive life in a woman, it is essential that most of her ovarian primordial follicles are maintained in a quiescent state to provide a continuous supply of oocytes. However, our understanding of the molecular mechanisms that control the quiescence and activation of primordial follicles is still in its infancy. In this study, we provide some genetic evidence to show that the tumor suppressor tuberous sclerosis complex 2 (Tsc2), which negatively regulates mammalian target of rapamycin complex 1 (mTORC1), functions in oocytes to maintain the dormancy of primordial follicles. In mutant mice lacking the Tsc2 gene in oocytes, the pool of primordial follicles is activated prematurely due to elevated mTORC1 activity in oocytes. This results in depletion of follicles in early adulthood, causing premature ovarian failure (POF). Our results suggest that the Tsc1-Tsc2 complex mediated suppression of mTORC1 activity is indispensable for maintenance of the dormancy of primordial follicles, thus preserving the follicular pool, and that mTORC1 activity in oocytes promotes follicular activation. Our results also indicate that deregulation of Tsc/mTOR signaling in oocytes may cause pathological conditions of the ovary such as infertility and POF.
  •  
3.
  • Adhikari, Deepak, et al. (författare)
  • The Safe Use of a PTEN Inhibitor for the Activation of Dormant Mouse Primordial Follicles and Generation of Fertilizable Eggs
  • 2012
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 7:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Primordial ovarian follicles, which are often present in the ovaries of premature ovarian failure (POF) patients or are cryopreserved from the ovaries of young cancer patients who are undergoing gonadotoxic anticancer therapies, cannot be used to generate mature oocytes for in vitro fertilization (IVF). There has been very little success in triggering growth of primordial follicles to obtain fertilizable oocytes due to the poor understanding of the biology of primordial follicle activation. Methodology/Principal Findings: We have recently reported that PTEN (phosphatase and tensin homolog deleted on chromosome ten) prevents primordial follicle activation in mice, and deletion of Pten from the oocytes of primordial follicles leads to follicular activation. Consequently, the PTEN inhibitor has been successfully used in vitro to activate primordial follicles in both mouse and human ovaries. These results suggest that PTEN inhibitors could be used in ovarian culture medium to trigger the activation of primordial follicle. To study the safety and efficacy of the use of such inhibitors, we activated primordial follicles from neonatal mouse ovaries by transient treatment with a PTEN inhibitor bpV(HOpic). These ovaries were then transplanted under the kidney capsules of recipient mice to generate mature oocytes. The mature oocytes were fertilized in vitro and progeny mice were obtained after embryo transfer. Results and Conclusions: Long-term monitoring up to the second generation of progeny mice showed that the mice were reproductively active and were free from any overt signs or symptoms of chronic illnesses. Our results indicate that the use of PTEN inhibitors could be a safe and effective way of generating mature human oocytes for use in novel IVF techniques.
  •  
4.
  • Adhikari, Deepak, et al. (författare)
  • Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:3, s. 397-410
  • Tidskriftsartikel (refereegranskat)abstract
    • To maintain the female reproductive lifespan, the majority of ovarian primordial follicles are preserved in a quiescent state in order to provide ova for later reproductive life. However, the molecular mechanism that maintains the long quiescence of primordial follicles is poorly understood. Here we provide genetic evidence to show that the tumor suppressor tuberous sclerosis complex 1 (Tsc1), which negatively regulates mammalian target of rapamycin complex 1 (mTORC1), functions in oocytes to maintain the quiescence of primordial follicles. In mutant mice lacking the Tsc1 gene in oocytes, the entire pool of primordial follicles is activated prematurely due to elevated mTORC1 activity in the oocyte, ending up with follicular depletion in early adulthood and causing premature ovarian failure (POF). We further show that maintenance of the quiescence of primordial follicles requires synergistic, collaborative functioning of both Tsc and PTEN (phosphatase and tensin homolog deleted on chromosome 10) and that these two molecules suppress follicular activation through distinct ways. Our results suggest that Tsc/mTORC1 signaling and PTEN/PI3K (phosphatidylinositol 3 kinase) signaling synergistically regulate the dormancy and activation of primordial follicles, and together ensure the proper length of female reproductive life. Deregulation of these signaling pathways in oocytes results in pathological conditions of the ovary, including POF and infertility.
  •  
5.
  • Gorre, Nagaraju (författare)
  • Molecular mechanisms of ovarian follicular development and early embryogenesis
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the mammalian ovary, the dormant primordial follicles are the source of developing follicles and fertilizable ova for the entire reproductive life. In addition, the duration of fertility of a female is determined by the initial size of her pool of primordial follicles and by the rate of its activation and depletion. Menopause (the end of female reproductive life), also known as ovarian senescence occurs when the pool of primordial follicles is exhausted. However, the molecular mechanisms underlying the reproductive aging and menopausal age in females are poorly understood. In this thesis, by generating the oocyte-specific deletion of Rptor, Tsc2 and Pdk1 in mice, I have thus studied PI3K-mTORC1 signaling in oocytes in physiological development of follicles and early embryogenesis of mice. We provided in vivo evidence that deletion of Rptor in oocytes of primordial and further developed follicles leads to the ablation of mTORC1 signaling. However, upon the loss of mTORC1 signaling in oocytes, follicular development and fertility of mice lacking Rptor in oocytes were not affected. Interestingly, PI3K signaling was found to be elevated upon the loss of mTORC1 signaling in oocytes, and become essential to maintain normal physiological development of ovarian follicles and fertility of females. Therefore, it indicates that the loss of mTORC1 signaling in oocytes triggers a compensatory activation of the PI3K-Akt signaling that maintains normal ovarian follicular development and fertility. However, the female mice lacking Tsc2, a negative regulator of mTORC1, in oocytes produced at most two litters of normal size and then became infertile in young adulthood. We found that the mTORC1–S6K1–rpS6 signaling is elevated upon the deletion of Tsc2 in oocytes, leading to the overactivation of pool of primordial follicle in ovaries of mice lacking Tsc2 in oocytes. Consequently, the ovaries lacking Tsc2 in oocytes were observed to be completely devoid of follicles, causing POF in early adulthood. Therefore, we identified the Tsc2 gene as an essential factor in oocytes to preserve the female reproductive lifespan by suppressing the activation of primordial follicles. Furthermore, we had shown that blockage of maternal PI3K signaling by deletion of Pdk1 from primary oocytes leads to the arrest of resultant embryos at the two-cell stage, which is most probably a consequence of suppressed EGA and a defective G2/M phase at the two-cell stage. Surprisingly, concurrent loss of maternal Pten recovered the impaired Akt activation, rescued the suppressed EGA and two-cell arrest of embryos, and restored the fertility of double-mutant females. We therefore identified the maternal PI3K/Pten–Pdk1–Akt signalling cascade as an indispensable maternal effect factor in triggering EGA and sustaining preimplantation embryogenesis in mice. In summary, Tsc2/mTORC1 signaling in oocytes is essential for the maintenance of quiescence and the survival of primordial follicles, and thereby controls the reproductive aging and menopausal age in females. Furthermore, the molecular network involved in PI3K/Pten–Pdk1–Akt signalling is crucial for EGA and preimplantation embryogenesis in mice.
  •  
6.
  • Gorre, Nagaraju, et al. (författare)
  • mTORC1 Signaling in Oocytes Is Dispensable for the Survival of Primordial Follicles and for Female Fertility
  • 2014
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 9:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular mechanisms underlying reproductive aging and menopausal age in female mammals are poorly understood. Mechanistic target of rapamycin complex 1 (mTORC1) is a central controller of cell growth and proliferation. To determine whether mTORC1 signaling in oocytes plays a direct role in physiological follicular development and fertility in female mice, we conditionally deleted the specific and essential mTORC1 component Rptor (regulatory-associated protein of mTORC1) from the oocytes of primordial follicles by using transgenic mice expressing growth differentiation factor 9 (Gdf-9) promoter-mediated Cre recombinase. We provide in vivo evidence that deletion of Rptor in the oocytes of both primordial and further-developed follicles leads to the loss of mTORC1 signaling in oocytes as indicated by loss of phosphorylation of S6K1 and 4e-bp1 at T389 and S65, respectively. However, the follicular development and fertility of mice lacking Rptor in oocytes were not affected. Mechanistically, the loss of mTORC1 signaling in Rptor-deleted mouse oocytes led to the elevation of phosphatidylinositol 3-kinase (PI3K) signaling that maintained normal follicular development and fertility. Therefore, this study shows that loss of mTORC1 signaling in oocytes triggers a compensatory activation of the PI3K signaling cascade that maintains normal ovarian follicular development and fertility.
  •  
7.
  • Zhang, Hua, et al. (författare)
  • Somatic Cells Initiate Primordial Follicle Activation and Govern the Development of Dormant Oocytes in Mice
  • 2014
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822. ; 24:21, s. 2501-2508
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The majority of oocytes in the mammalian ovary are dormant oocytes that are enclosed in primordial follicles by several somatic cells, which we refer to as primordial follicle granulosa cells (pfGCs). Very little is known, however, about how the pfGCs control the activation of primordial follicles and the developmental fates of dormant oocytes. Results: By targeting molecules in pfGCs with several mutant mouse models, we demonstrate that the somatic pfGCs initiate the activation of primordial follicles and govern the quiescence or awakening of dormant oocytes. Inhibition of mTORC1 signaling in pfGCs prevents the differentiation of pfGCs into granulosa cells, and this arrests the dormant oocytes in their quiescent states, leading to oocyte death. Overactivation of mTORC1 signaling in pfGCs accelerates the differentiation of pfGCs into granulosa cells and causes premature activation of all dormant oocytes and primordial follicles. We further show that pfGCs trigger the awakening of dormant oocytes through KIT ligand (KITL), and we present an essential communication network between the somatic cells and germ cells that is based on signaling between the mTORC1-KITL cascade in pfGCs and KIT-PI3K signaling in oocytes. Conclusions: Our findings provide a relatively complete picture of how mammalian primordial follicles are activated. The microenvironment surrounding primordial follicles can activate mTORC1-KITL signaling in pfGCs, and these cells trigger the awakening of dormant oocytes and complete the process of follicular activation. Such communication between the microenvironment, somatic cells, and germ cells is essential to maintaining the proper reproductive lifespan in mammals.
  •  
8.
  • Zheng, Wenjing, et al. (författare)
  • Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary
  • 2012
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 356:1-2, s. 24-30
  • Forskningsöversikt (refereegranskat)abstract
    • Phosphatidylinositol 3-kinase (PI3K) signaling is a fundamental pathway for the regulation of cell proliferation, survival, migration, and metabolism in a variety of physiological and pathological processes. In recent years information provided by genetically modified mouse models has revealed that PI3K signaling plays vital roles in oogenesis, folliculogenesis, ovulation, and carcinogenesis in mouse ovary. In this review, we summarize (1) the physiological function of intra-oocyte PI3K signaling in regulation of primordial follicle survival and activation; (2) intra-granulosa cell PI3K signaling in regulation of cyclic follicular recruitment and ovulation; (3) intra-oocyte PI3K signaling in regulation of meiosis resumption and early embryogenesis; and also (4) the pathological function of PI3K signaling in ovarian diseases such as premature ovarian failure, granulosa cell tumors, and ovarian surface epithelium carcinomas. This updated info hopefully will lead to a better understanding of the human ovary and provide potential therapies for treating human infertility. © 2011.
  •  
9.
  • Zheng, Wenjing, et al. (författare)
  • Maternal phosphatidylinositol 3-kinase signalling is crucial for embryonic genome activation and preimplantation embryogenesis
  • 2010
  • Ingår i: EMBO Reports. - : EMBO. - 1469-221X .- 1469-3178. ; 11:11, s. 890-895
  • Tidskriftsartikel (refereegranskat)abstract
    • Maternal effect factors derived from oocytes are important for sustaining early embryonic development before the major wave of embryonic genome activation (EGA). In this study, we report a two-cell-stage arrest of embryos lacking maternal 3-phosphoinositide-dependent protein kinase 1 as a result of suppressed EGA. Concurrent deletion of maternal Pten completely rescued the suppressed EGA and embryonic progression through restored AKT signalling, which fully restored the fertility of double-mutant females. Our study identifies maternal phosphatidylinositol 3-kinase signalling as a new maternal effect factor that regulates EGA and preimplantation embryogenesis in mice.
  •  
10.
  • Zheng, Wenjing, et al. (författare)
  • Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions.
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:4, s. 920-928
  • Tidskriftsartikel (refereegranskat)abstract
    • In the mammalian ovary, progressive activation of primordial follicles serves as the source of fertilizable ova, and disorders in the development of primordial follicles lead to various ovarian diseases. However, very little is known about the developmental dynamics of primordial follicles under physiological conditions, and the fates of distinct populations of primordial follicles also remain unclear. In this study, by generating the Foxl2-CreERT2 and Sohlh1-CreERT2 inducible mouse models, we have specifically labeled and traced the in vivo development of two classes of primordial follicles, the first wave of simultaneously activated follicles after birth and the primordial follicles that are gradually activated in adulthood. Our results show that the first wave of follicles exists in the ovaries for ∼3 months and contributes to the onset of puberty and to early fertility. The primordial follicles at the ovarian cortex gradually replace the first wave of follicles and dominate the ovary after 3 months of age, providing fertility until the end of reproductive life. Moreover, by tracing the time periods needed for primordial follicles to reach various advanced stages in vivo, we were able to determine the exact developmental dynamics of the two classes of primordial follicles. We have now revealed the lifelong developmental dynamics of ovarian primordial follicles under physiological conditions and have clearly shown that two classes of primordial follicles follow distinct, age-dependent developmental paths and play different roles in the mammalian reproductive lifespan.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy