SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gottlieb Eyal) "

Sökning: WFRF:(Gottlieb Eyal)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Monterisi, Stefania, et al. (författare)
  • PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling.
  • 2017
  • Ingår i: eLife. - 2050-084X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • cAMP/PKA signalling is compartmentalised with tight spatial and temporal control of signal propagation underpinning specificity of response. The cAMP-degrading enzymes, phosphodiesterases (PDEs), localise to specific subcellular domains within which they control local cAMP levels and are key regulators of signal compartmentalisation. Several components of the cAMP/PKA cascade are located to different mitochondrial sub-compartments, suggesting the presence of multiple cAMP/PKA signalling domains within the organelle. The function and regulation of these domains remain largely unknown. Here, we describe a novel cAMP/PKA signalling domain localised at mitochondrial membranes and regulated by PDE2A2. Using pharmacological and genetic approaches combined with real-time FRET imaging and high resolution microscopy, we demonstrate that in rat cardiac myocytes and other cell types mitochondrial PDE2A2 regulates local cAMP levels and PKA-dependent phosphorylation of Drp1. We further demonstrate that inhibition of PDE2A, by enhancing the hormone-dependent cAMP response locally, affects mitochondria dynamics and protects from apoptotic cell death.
  •  
2.
  • Ryvkin, Julia, et al. (författare)
  • Failure to mate enhances investment in behaviors that may promote mating reward and impairs the ability to cope with stressors via a subpopulation of Neuropeptide F receptor neurons
  • 2024
  • Ingår i: PLOS Genetics. - 1553-7390 .- 1553-7404. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Living in dynamic environments such as the social domain, where interaction with others determines the reproductive success of individuals, requires the ability to recognize opportunities to obtain natural rewards and cope with challenges that are associated with achieving them. As such, actions that promote survival and reproduction are reinforced by the brain reward system, whereas coping with the challenges associated with obtaining these rewards is mediated by stress-response pathways, the activation of which can impair health and shorten lifespan. While much research has been devoted to understanding mechanisms underlying the way by which natural rewards are processed by the reward system, less attention has been given to the consequences of failure to obtain a desirable reward. As a model system to study the impact of failure to obtain a natural reward, we used the well-established courtship suppression paradigm in Drosophila melanogaster as means to induce repeated failures to obtain sexual reward in male flies. We discovered that beyond the known reduction in courtship actions caused by interaction with non-receptive females, repeated failures to mate induce a stress response characterized by persistent motivation to obtain the sexual reward, reduced male-male social interaction, and enhanced aggression. This frustrative-like state caused by the conflict between high motivation to obtain sexual reward and the inability to fulfill their mating drive impairs the capacity of rejected males to tolerate stressors such as starvation and oxidative stress. We further show that sensitivity to starvation and enhanced social arousal is mediated by the disinhibition of a small population of neurons that express receptors for the fly homologue of neuropeptide Y. Our findings demonstrate for the first time the existence of social stress in flies and offers a framework to study mechanisms underlying the crosstalk between reward, stress, and reproduction in a simple nervous system that is highly amenable to genetic manipulation. In this study we investigated the effects of failure to obtain reward on the behavioral actions and physiology of male flies. We exposed Drosophila males to repeated sexual encounters with non-receptive females that rejected their courtship efforts and tested the effect on their behavioral responses using a collection of behavioral paradigms. These responses encompass alterations in social behavior, increased aggression, heightened motivation to mate, and a reduced capacity to cope with stressors. We further show that the high motivational state and sensitivity to stress is mediated by the disinhibition of a small population of neurons that express receptors for the fly homologue of neuropeptide Y.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy