SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gotz M.) "

Sökning: WFRF:(Gotz M.)

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amati, L., et al. (författare)
  • The THESEUS space mission concept : science case, design and expected performances
  • 2018
  • Ingår i: Advances in Space Research. - : ELSEVIER SCI LTD. - 0273-1177 .- 1879-1948. ; 62:1, s. 191-244
  • Tidskriftsartikel (refereegranskat)abstract
    • THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1 sr) with 0.5-1 arcmin localization, an energy band extending from several MeV down to 0.3 keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7 m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift similar to 10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late '20s/early '30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA).
  •  
2.
  • Feroci, M., et al. (författare)
  • The Large Observatory for X-ray Timing (LOFT)
  • 2012
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 34:2, s. 415-444
  • Tidskriftsartikel (refereegranskat)abstract
    • High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m(2)-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionise the study of collapsed objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an innovative design and the development of large-area monolithic silicon drift detectors, the Large Area Detector (LAD) on board LOFT will achieve an effective area of similar to 12 m(2) (more than an order of magnitude larger than any spaceborne predecessor) in the 2-30 keV range (up to 50 keV in expanded mode), yet still fits a conventional platform and small/medium-class launcher. With this large area and a spectral resolution of < 260 eV, LOFT will yield unprecedented information on strongly curved spacetimes and matter under extreme conditions of pressure and magnetic field strength.
  •  
3.
  • Escartin, C., et al. (författare)
  • Reactive astrocyte nomenclature, definitions, and future directions
  • 2021
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1097-6256 .- 1546-1726. ; 24, s. 312-325
  • Tidskriftsartikel (refereegranskat)abstract
    • Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions. Good-bad binary classifications fail to describe reactive astrocytes in CNS disorders. Here, 81 researchers reach consensus on widespread misconceptions and provide definitions and recommendations for future research on reactive astrocytes.
  •  
4.
  • Maier, O., et al. (författare)
  • ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
  • 2017
  • Ingår i: Medical Image Analysis. - : Elsevier BV. - 1361-8415 .- 1361-8423. ; 35, s. 250-269
  • Tidskriftsartikel (refereegranskat)abstract
    • Ischemic stroke is the most common cerebrovascular disease, and its diagnosis, treatment, and study relies on non-invasive imaging. Algorithms for stroke lesion segmentation from magnetic resonance imaging (MRI) volumes are intensely researched, but the reported results are largely incomparable due to different datasets and evaluation schemes. We approached this urgent problem of comparability with the Ischemic Stroke Lesion Segmentation (ISLES) challenge organized in conjunction with the MICCAI 2015 conference. In this paper we propose a common evaluation framework, describe the publicly available datasets, and present the results of the two sub-challenges: Sub-Acute Stroke Lesion Segmentation (SISS) and Stroke Perfusion Estimation (SPES). A total of 16 research groups participated with a wide range of state-of-the-art automatic segmentation algorithms. A thorough analysis of the obtained data enables a critical evaluation of the current state-of-the-art, recommendations for further developments, and the identification of remaining challenges. The segmentation of acute perfusion lesions addressed in SPES was found to be feasible. However, algorithms applied to sub-acute lesion segmentation in SISS still lack accuracy. Overall, no algorithmic characteristic of any method was found to perform superior to the others. Instead, the characteristics of stroke lesion appearances, their evolution, and the observed challenges should be studied in detail. The annotated ISLES image datasets continue to be publicly available through an online evaluation system to serve as an ongoing benchmarking resource (www.isles-challenge.org).
  •  
5.
  • Sexton, C. E., et al. (författare)
  • Alzheimer's disease research progress in Australia: The Alzheimer's Association International Conference Satellite Symposium in Sydney
  • 2022
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:1, s. 178-190
  • Tidskriftsartikel (refereegranskat)abstract
    • The Alzheimer's Association International Conference held its sixth Satellite Symposium in Sydney, Australia in 2019, highlighting the leadership of Australian researchers in advancing the understanding of and treatment developments for Alzheimer's disease (AD) and other dementias. This leadership includes the Australian Imaging, Biomarker, and Lifestyle Flagship Study of Ageing (AIBL), which has fueled the identification and development of many biomarkers and novel therapeutics. Two multimodal lifestyle intervention studies have been launched in Australia; and Australian researchers have played leadership roles in other global studies in diverse populations. Australian researchers have also played an instrumental role in efforts to understand mechanisms underlying vascular contributions to cognitive impairment and dementia; and through the Women's Healthy Aging Project have elucidated hormonal and other factors that contribute to the increased risk of AD in women. Alleviating the behavioral and psychological symptoms of dementia has also been a strong research and clinical focus in Australia.
  •  
6.
  • Hack, MA, et al. (författare)
  • Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6
  • 2004
  • Ingår i: Molecular and Cellular Neuroscience. - : Elsevier BV. - 1044-7431. ; 25:4, s. 664-678
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurosphere cultures are widely used to propagate multipotent CNS precursors, but their differentiation into neurons or oligodendrocytes is rather poor. To elucidate fate determination in this system, we examined the expression and function of candidate transcription factors in neurospheres derived from different CNS regions during development and adulthood. We observed prominent down-regulation of most transcription factors present in telencephalic precursors upon growth factor exposure in neurosphere cultures while Olig1 and Olig2 expression was strongly up-regulated. Interference with Olig2 in neurospheres revealed its role in self-renewal during expansion and for the generation of neurons and oligodendrocytes during differentiation. We further show that neurogenesis becomes fully Pax6-dependent in the neurosphere culture system, independent of the region of origin, and that Pax6 overexpression is sufficient to direct almost all neurosphere-derived cells towards neurogenesis. Thus, a pathway combining transcription factors of dorsal and ventral regions is activated in the neurosphere culture model. (C) 2004 Elsevier Inc. All rights reserved.
  •  
7.
  •  
8.
  •  
9.
  • Gotz, L., et al. (författare)
  • GlycoDigest: a tool for the targeted use of exoglycosidase digestions in glycan structure determination
  • 2014
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 30:21, s. 3131-3133
  • Tidskriftsartikel (refereegranskat)abstract
    • Sequencing oligosaccharides by exoglycosidases, either sequentially or in an array format, is a powerful tool to unambiguously determine the structure of complex N- and O-link glycans. Here, we introduce GlycoDigest, a tool that simulates exoglycosidase digestion, based on controlled rules acquired from expert knowledge and experimental evidence available in GlycoBase. The tool allows the targeted design of glycosidase enzyme mixtures by allowing researchers to model the action of exoglycosidases, thereby validating and improving the efficiency and accuracy of glycan analysis.
  •  
10.
  • Papitto, A., et al. (författare)
  • The INTEGRAL view of the pulsating hard X-ray sky : from accreting and transitional millisecond pulsars to rotation-powered pulsars and magnetars
  • 2020
  • Ingår i: New astronomy reviews (Print). - : Elsevier BV. - 1387-6473 .- 1872-9630. ; 91
  • Tidskriftsartikel (refereegranskat)abstract
    • In the last 25 years a new generation of X-ray satellites imparted a significant leap forward in our knowledge of X-ray pulsars. The discovery of accreting and transitional millisecond pulsars proved that disk accretion can spin up a neutron star to a very high rotation speed. The detection of MeV-GeV pulsed emission from a few hundreds of rotation-powered pulsars probed particle acceleration in the outer magnetosphere, or even beyond. Also, a population of two dozens of magnetars has emerged. INTEGRAL played a central role to achieve these results by providing instruments with high temporal resolution up to the hard X-ray/soft, gamma-ray band and a large field of view imager with good angular resolution to spot hard X-ray transients. In this article we review the main contributions by INTEGRAL to our understanding of the pulsating hard X-ray sky, such as the discovery and characterization of several accreting and transitional millisecond pulsars, the generation of the first catalog of hard X-ray/soft gamma-ray rotation-powered pulsars, the detection of polarization in the hard X-ray emission from the Crab pulsar, and the discovery of persistent hard X-ray emission from several magnetars.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy