SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gourdon P.) "

Sökning: WFRF:(Gourdon P.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buchanan, E. M., et al. (författare)
  • The Psychological Science Accelerator's COVID-19 rapid-response dataset
  • 2023
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Jensen, M. S., et al. (författare)
  • Phospholipid flipping involves a central cavity in P4 ATPases
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • P4 ATPase flippases translocate phospholipids across biomembranes, thus contributing to the establishment of transmembrane lipid asymmetry, a feature important for multiple cellular processes. The mechanism by which such phospholipid flipping occurs remains elusive as P4 ATPases transport a giant substrate very different from that of other P-type ATPases such as Na+/K+-and Ca2+-ATPases. Based on available crystal structures of cation-transporting P-type ATPases, we generated a structural model of the broad-specificity flippase ALA10. In this model, a cavity delimited by transmembrane segments TM3, TM4, and TM5 is present in the transmembrane domain at a similar position as the cation-binding region in related P-type ATPases. Docking of a phosphatidylcholine headgroup in silico showed that the cavity can accommodate a phospholipid headgroup, likely leaving the fatty acid tails in contact with the hydrophobic portion of the lipid bilayer. Mutagenesis data support this interpretation and suggests that two residues in TM4 (Y374 and F375) are important for coordination of the phospholipid headgroup. Our results point to a general mechanism of lipid translocation by P4 ATPases, which closely resembles that of cation-transporting pumps, through coordination of the hydrophilic portion of the substrate in a central membrane cavity.
  •  
6.
  • Delsing, Per, 1959, et al. (författare)
  • The 2019 surface acoustic waves roadmap
  • 2019
  • Ingår i: Journal of Physics D: Applied Physics. - : IOP Publishing. - 1361-6463 .- 0022-3727. ; 52:35
  • Forskningsöversikt (refereegranskat)abstract
    • Today, surface acoustic waves (SAWs) and bulk acoustic waves are already two of the very few phononic technologies of industrial relevance and can been found in a myriad of devices employing these nanoscale earthquakes on a chip. Acoustic radio frequency filters, for instance, are integral parts of wireless devices. SAWs in particular find applications in life sciences and microfluidics for sensing and mixing of tiny amounts of liquids. In addition to this continuously growing number of applications, SAWs are ideally suited to probe and control elementary excitations in condensed matter at the limit of single quantum excitations. Even collective excitations, classical or quantum are nowadays coherently interfaced by SAWs. This wide, highly diverse, interdisciplinary and continuously expanding spectrum literally unites advanced sensing and manipulation applications. Remarkably, SAW technology is inherently multiscale and spans from single atomic or nanoscopic units up even to the millimeter scale. The aim of this Roadmap is to present a snapshot of the present state of surface acoustic wave science and technology in 2019 and provide an opinion on the challenges and opportunities that the future holds from a group of renown experts, covering the interdisciplinary key areas, ranging from fundamental quantum effects to practical applications of acoustic devices in life science.
  •  
7.
  • Georgiou, P., et al. (författare)
  • Picosecond calorimetry: Time-resolved x-ray diffraction studies of liquid CH2Cl2
  • 2006
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 124:23, s. 234507-
  • Tidskriftsartikel (refereegranskat)abstract
    • Liquid phase time-resolved x-ray diffraction with 100 ps resolution has recently emerged as a powerful technique for probing the structural dynamics of transient photochemical species in solution. It is intrinsic to the method, however, that a structural signal is observed not only from the photochemical of interest but also from the embedding solvent matrix. To experimentally characterize the x-ray diffraction signal deriving from the solvent alone we performed time-resolved diffraction studies of a pure liquid sample over a time domain from -250 ps to 2.5 mu s. Multiphoton excitation was used to rapidly heat liquid CH2Cl2 using UV pulses of 100 fs duration. A significant x-ray diffraction signal is visible prior to the onset of thermal expansion, which characterizes a highly compressed superheated liquid. Liquid CH2Cl2 then expands as a shock wave propagates through the sample and the temporal dependence of this phenomenon is in good agreement with theory. An unexpectedly slow initial release of energy into the liquid as heat is observed from multiphoton excited CH2Cl2, revealing the presence of a metastable state of multiphoton excited CH2Cl2.
  •  
8.
  •  
9.
  •  
10.
  • Hering, Jenny, et al. (författare)
  • The rapid "teabag" method for high-end purification of membrane proteins
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Overproduction and purification of membrane proteins are generally challenging and time-consuming procedures due to low expression levels, misfolding, and low stability once extracted from the membrane. Reducing processing steps and shortening the timespan for purification represent attractive approaches to overcome some of these challenges. We have therefore compared a fast "teabag" purification method with conventional purification for five different membrane proteins (MraY, AQP10, CIC-1, PAR2 and KCC2). Notably, this new approach reduces the purification time significantly, and the quality of the purified membrane proteins is equal to or exceeds conventional methods as assessed by size exclusion chromatography, SDS-PAGE and downstream applications such as ITC, crystallization and cryo-EM. Furthermore, the method is scalable, applicable to a range of affinity resins and allows for parallelization. Consequently, the technique has the potential to substantially simplify purification efforts of membrane proteins in basic and applied sciences.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy