SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gourgoulhon E.) "

Sökning: WFRF:(Gourgoulhon E.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barausse, Enrico, et al. (författare)
  • Prospects for fundamental physics with LISA
  • 2020
  • Ingår i: General Relativity and Gravitation. - : SPRINGER/PLENUM PUBLISHERS. - 0001-7701 .- 1572-9532. ; 52:8
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • In this paper, which is of programmatic rather than quantitative nature, we aim to further delineate and sharpen the future potential of the LISA mission in the area of fundamental physics. Given the very broad range of topics that might be relevant to LISA,we present here a sample of what we view as particularly promising fundamental physics directions. We organize these directions through a "science-first" approach that allows us to classify how LISA data can inform theoretical physics in a variety of areas. For each of these theoretical physics classes, we identify the sources that are currently expected to provide the principal contribution to our knowledge, and the areas that need further development. The classification presented here should not be thought of as cast in stone, but rather as a fluid framework that is amenable to change with the flow of new insights in theoretical physics.
  •  
2.
  • Abramowicz, Marek A, 1945, et al. (författare)
  • A Galactic centre gravitational-wave Messenger
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Our existence in the Universe resulted from a rare combination of circumstances. The same must hold for any highly developed extraterrestrial civilisation, and if they have ever existed in the Milky Way, they would likely be scattered over large distances in space and time. However, all technologically advanced species must be aware of the unique property of the galactic centre: it hosts Sagittarius A* (Sgr A*), the closest supermassive black hole to anyone in the Galaxy. A civilisation with sufficient technical know-how may have placed material in orbit around Sgr A* for research, energy extraction, and communication purposes. In either case, its orbital motion will necessarily be a source of gravitational waves. We show that a Jupiter-mass probe on the retrograde innermost stable circular orbit around Sgr A* emits, depending on the black hole spin, at a frequency of fGW = 0.63–1.07 mHz and with a power of PGW = 2.7 × 1036–2.0 × 1037 erg/s. We discuss that the energy output of a single star is sufficient to stabilise the location of an orbiting probe for a billion years against gravitational wave induced orbital decay. Placing and sustaining a device near Sgr A* is therefore astrophysically possible. Such a probe will emit an unambiguously artificial continuous gravitational wave signal that is observable with LISA-type detectors. © 2020, The Author(s).
  •  
3.
  • Lasota, J. P., et al. (författare)
  • Extracting black-hole rotational energy: The generalized Penrose process
  • 2014
  • Ingår i: Physical Review D. - 1550-7998. ; 89:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In the case involving particles, the necessary and sufficient condition for the Penrose process to extract energy from a rotating black hole is absorption of particles with negative energies and angular momenta. No torque at the black-hole horizon occurs. In this article we consider the case of arbitrary fields or matter described by an unspecified, general energy-momentum tensor T-mu nu and show that the necessary and sufficient condition for extraction of a black hole's rotational energy is analogous to that in the mechanical Penrose process: absorption of negative energy and negative angular momentum. We also show that a necessary condition for the Penrose process to occur is for the Noether current (the conserved energy-momentum density vector) to be spacelike or past directed (timelike or null) on some part of the horizon. In the particle case, our general criterion for the occurrence of a Penrose process reproduces the standard result. In the case of relativistic jet-producing "magnetically arrested disks," we show that the negative energy and angular-momentum absorption condition is obeyed when the Blandford-Znajek mechanism is at work, and hence the high energy extraction efficiency up to similar to 300% found in recent numerical simulations of such accretion flows results from tapping the black hole's rotational energy through the Penrose process. We show how black-hole rotational energy extraction works in this case by describing the Penrose process in terms of the Noether current.
  •  
4.
  • Straub, O., et al. (författare)
  • Modelling the black hole silhouette in Sagittarius A* with ion tori
  • 2012
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 543
  • Tidskriftsartikel (refereegranskat)abstract
    • We calculate the "observed at infinity" image and spectrum of the accretion structure in Sgr A*, by modelling it as an optically thin, constant angular momentum ion torus in hydrodynamic equilibrium. The physics we consider includes a two-temperature plasma, a toroidal magnetic field, as well as radiative cooling by bremsstrahlung, synchrotron, and inverse Compton processes. Our relativistic model has the virtue of being fully analytic and very simple, depending only on eight tunable parameters: the black hole spin and the inclination of the spin axis to our line of sight, the torus angular momentum, the polytropic index, the magnetic to total pressure ratio, the central values of density and electron temperature, and the ratio of electron to ion temperatures. The observed image and spectrum are calculated numerically using the ray-tracing code GYOTO. Our results demonstrate that the ion torus model is able to account for the main features of the accretion structure surrounding Sgr A*. RAMOWICZ M, 1978, ASTRONOMY AND ASTROPHYSICS, V63, P221 RAMOWICZ MA, 1995, ASTROPHYSICAL JOURNAL, V438, PL37 RAMOWICZ MA, 1983, MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, V203, P323
  •  
5.
  • Vincent, F. H., et al. (författare)
  • Geometric modeling of M87*as a Kerr black hole or a non-Kerr compact object
  • 2021
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Event Horizon Telescope (EHT) collaboration recently obtained the first images of the surroundings of the supermassive compact object M87* at the center of the galaxy M87. This provides a fascinating probe of the properties of matter and radiation in strong gravitational fields. It is important to determine from the analysis of these results what can and cannot be inferred about the nature of spacetime around M87*Aims. We want to develop a simple analytic disk model for the accretion flow of M87*. Compared to general-relativistic magnetohydrodynamic models, this new approach has the advantage that it is independent of the turbulent character of the flow and is controlled by only a few easy-to-interpret, physically meaningful parameters. We want to use this model to predict the image of M87*, assuming that it is either a Kerr black hole or an alternative compact object.Methods. We computed the synchrotron emission from the disk model and propagate the resulting light rays to the far-away observer by means of relativistic ray tracing. Such computations were performed assuming different spacetimes, such as Kerr, Minkowski, nonrotating ultracompact star, rotating boson star, or Lamy spinning wormhole. We performed numerical fits of these models to the EHT data.Results. We discuss the highly lensed features of Kerr images and show that they are intrinsically linked to the accretion-flow properties and not only to gravitation. This fact is illustrated by the notion of the secondary ring, which we introduce. Our model of a spinning Kerr black hole predicts mass and orientation consistent with the EHT interpretation. The non-Kerr images result in a similar quality of numerical fits and may appear very similar to Kerr images, once blurred to the EHT resolution. This implies that a strong test of the Kerr spacetime may be out of reach with the current data. We note that future developments of the EHT could alter this situation.Conclusions. Our results show the importance of studying alternatives to the Kerr spacetime to be able to test the Kerr paradigm unambiguously. More sophisticated treatments of non-Kerr spacetimes and more advanced observations are needed to proceed further in this direction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy