SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gräslund Torbjörn Docent) "

Sökning: WFRF:(Gräslund Torbjörn Docent)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Engelmark Cassimjee, Karim (författare)
  • Tools in biocatalysis : enzyme immobilisation on silica and synthesis of enantiopure amines
  • 2010
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents two techniques in the field of biocatalysis: An enzyme immobilisation method based on the His6-tag for attachment on modified silica oxide beads, and it’s employment in aqueous and organic medium for synthesis applications. The method functions as a one step extraction and immobilisation protocol. An equilibrium displacement system which enables complete conversion in reactions with ω-transaminases where isopropylamine is the donor, a route for synthesis of pharmaceutically interesting enantiopure amines. Biocatalysis is predicted to be a paramount technology for an environmentally sustainable chemical industry, to which every newly developed method represents a small but important step. The work done here is aimed to be a part of this development.  
  •  
3.
  • Hofström, Camilla, 1979- (författare)
  • Engineering of Affibody molecules for Radionuclide Molecular Imaging and Intracellular Targeting
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Affibody molecules are small (7 kDa) affinity proteins of non-immunoglobulin origin that have been generated to specifically interact with a large number of clinically important molecular targets.In this thesis, Affibody molecules have been employed as tracers for radionuclide molecular imaging of HER2- and IGF-1R-expressing tumors, paper I-IV, and for surface knock-down of EGFR, paper V. In paper I, a tag with the amino acid sequence HEHEHE was fused to the N-terminus of a HER2-specific Affibody molecule, (ZHER2), and was shown to enable facile IMAC purification and efficient tri-carbonyl 99mTc-labeling. In vivo evaluation of radioactivity uptake in different organs showed an improved biodistribution, including a 10-fold lower radioactivity uptake in liver, compared to the same construct with a H6-tag. In paper II, it was further shown that an N-terminally placed HEHEHE-tag on ZHER2 provided lower unspecific uptake of radioactivity in liver compared to its H6-tagged counterpart even when radiolabeling was at the C-terminus using alternative chemistries to attach 99mTc, 111In or 125I. In paper III, the H6-tag’s composition and position was varied with regards to charge, hydrophobicity and its C- or N-terminal placement on ZHER2. Among the ten variants investigated, it was found that an N-terminal HEHEHE-tag provided the most favorable overall biodistribution profile and that introduction of hydrophobic and positively charged amino acids provoked liver uptake of radioactivity. In paper IV, the HEHEHE-tag was shown to enable IMAC purification and tri-carbonyl 99mTc-labeling of an IGF-1R-specific Affibody molecule and improved its overall biodistribution when compared to the same construct with a H6-tag. In paper V, the aim was to develop an intracellular receptor-entrapment system to reduce the surface levels of EGFR. An EGFR-specific Affibody molecule was expressed as a fusion to different mutants of an intracellular transport protein in SKOV-3 cells, resulting in a collection of cell lines with 50%, 60%, 80% and 96% reduced surface level of EGFR. Analysis of the proliferation rate of these cell lines showed that a modest reduction (15%) in proliferation occurs between 60% and 80% reduction of the surface level of EGFR.
  •  
4.
  • Ladd, Brian, et al. (författare)
  • Proof-of-Concept of Continuous Transfection for Adeno-Associated Virus Production in Microcarrier-Based Culture
  • 2022
  • Ingår i: Processes. - : MDPI AG. - 2227-9717. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Adeno-associated virus vectors (AAV) are reported to have a great potential for gene therapy, however, a major bottleneck for this kind of therapy is the limitation of production capacity. Higher specific AAV vector yield is often reported for adherent cell systems compared to cells in suspension, and a microcarrier-based culture is well established for the culture of anchored cells on a larger scale. The purpose of the present study was to explore how microcarrier cultures could provide a solution for the production of AAV vectors based on the triple plasmid transfection of HEK293T cells in a stirred tank bioreactor. In the present study, cells were grown and expanded in suspension, offering the ease of this type of operation, and were then anchored on microcarriers in order to proceed with transfection of the plasmids for transient AAV vector production. This process was developed in view of a bioreactor application in a 200 mL stirred-tank vessel where shear stress aspects were studied. Furthermore, amenability to a continuous process was studied. The present investigation provided a proof-of-concept of a continuous process based on microcarriers in a stirred-tank bioreactor.
  •  
5.
  • Lundberg, Emma, 1980- (författare)
  • Bioimaging for analysis of protein expression in cells and tissues using affinity reagents
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The detection and analysis of biomolecules, such as proteins, are of great interest since these molecules are fundamental for life and our health. Due to the complexity of biological processes, there is a great advantage of studying proteins in their natural context, for example by using bioimaging. The objective of this doctoral thesis has been to develop, implement and evaluate techniques for the use of proteinspecific affinity reagents in diverse bioimaging platforms for analysis of protein expression in situ in cells and tissues. To be able to visualize a desired protein in situ using affinity reagents, reporter labels are needed. A novel technique for labeling of antibodies on solid phase was developed. This method offers simultaneous purification, concentration and labeling of an antibody sample, giving highly predictable and reproducible results, in a miniaturized format. Another study demonstrates the use of an alternative affinity reagent, the Affibody molecule, in bioimaging as well as other immunoassays. As a relevant proof-of-principle, an Affibody molecule binding the HER2 receptor was site-specificly labeled and employed for analysis of HER2 protein expression in cells and tissue using immunofluorescence (IF), immunohistochemistry (IHC), immunoprecipitation and flow cytometry. Furthermore, it is shown how antibody-based bioimaging approaches can be applied for systematic analysis of protein expression in terms of subcellular localization and expression levels in cell lines. The systematic subcellular localization of nearly 500 proteins was performed using IF and confocal microscopy. Global analysis of expression levels of nearly 2000 proteins in a panel of cell lines using IHC and automated image analysis, revealed that most proteins are expressed in a cell size dependent manner. Two normalization approaches were evaluated and found to allow for protein profiling across the panel of morphologically diverse cells, revealing patterns of protein over- and underexpression, and proteins with stable as well as with lineage specific expression were identified. Finally, the value of antibody-based, bioimaging proteomics as a platform for biomarker discovery is demonstrated. The identification and in depth study of a candidate biomarker for colorectal cancer, SATB2, is described using both IHC and IF bioimaging. Results from extended analyses of tumor biopsies showed that detection of SATB2 protein using IHC provides a clinically relevant diagnostic tool with high specificity and sensitivity to aid in diagnosis of colorectal cancer. Furthermore, the study demonstrated a potential prognostic role of SATB2, as decreased expression was associated with a significantly shorter overall survival in patients with advanced colorectal cancer.
  •  
6.
  • Malm, Magdalena, 1983-, et al. (författare)
  • Harnessing secretory pathway differences between HEK293 and CHO to rescue production of difficult to express proteins
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify bottlenecks limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant overexpression. Surprisingly, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293. While most components of the secretory machinery showed comparable expression levels in both expression hosts, genes with significant expression variation were identified. Among these, ATF4, SRP9, JUN, PDIA3 and HSPA8 were validated as productivity boosters in CHO. Further, more heavily glycosylated products benefitted more from the elevated activities of the N- and O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of HEK293 for expression rescue of human proteins and suggest a methodology for identification of secretory pathway components improving recombinant protein yield in HEK293 and CHO.
  •  
7.
  • Malm, Magdalena, 1983-, et al. (författare)
  • Harnessing secretory pathway differences between HEK293 and CHO to rescue production of difficult to express proteins
  • 2022
  • Ingår i: Metabolic engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 72, s. 171-187
  • Tidskriftsartikel (refereegranskat)abstract
    • Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify metabolic engineering targets limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant expression. In an expression comparison of 24 difficult to express proteins, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293. Guided by a comprehensive transcriptomics comparison between cell lines, especially highlighting differences in secretory pathway utilization, a co-expression screening of 21 secretory pathway components validated ATF4, SRP9, JUN, PDIA3 and HSPA8 as productivity boosters in CHO. Moreover, more heavily glycosylated products benefitted more from the elevated activities of the N- and O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of HEK293 for expression rescue of human proteins and suggest a methodology for identification of secretory pathway components for metabolic engineering of HEK293 and CHO.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy