SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Grönkvist Mikael J) "

Search: WFRF:(Grönkvist Mikael J)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Grönkvist, Mikael J, et al. (author)
  • Mechanisms of ventilation inhomogeneity during vital capacity breaths standing and supine
  • 2002
  • In: Respiration Physiology. - 0034-5687 .- 1872-7611. ; 129:3, s. 345-355
  • Journal article (peer-reviewed)abstract
    • Overall inhomogeneity of ventilation distribution, as measured by single-breath vital capacity (VC) washout (SBW) is known to be greater supine vs. standing. To establish the underlying mechanisms 13 healthy males performed VC SBW of 4% SF(6) and He, standing and supine, with or without a 10 sec breathhold (BH). Overall inhomogeneity, as indicated by normalized phase III slopes, was >50% greater supine (SF(6) 13.1 x 10(-3); He 10.7 x 10(-3) L(-1)) than standing (SF(6) 8.6 x 10(-3); He 6.4 x 10(-3) L(-1); P<0.001). The (SF(6)-He) slope, an index of intraacinar inhomogeneity, did not change with posture. Breathholding, assumed to eliminate convective dependent inhomogeneity within and/or between small lung units, produced twice as great reduction of inhomogeneity when supine vs. standing. After BH inhomogeneity remained significantly greater supine vs. standing. In conclusion, at least two events seem to underlie the increased inhomogeneity when supine: (1) a substantially increased convection dependent non-uniformity between well-separated lung regions; and (2) a somewhat increased convection dependent non-uniformity within and/or between peripherally located lung units.
  •  
2.
  • Grönkvist, Mikael J, et al. (author)
  • Contributions of lower limb and abdominal compression to ventilation inhomogeneity in hypergravity
  • 2005
  • In: Respir Physiol Neurobiol. - : Elsevier BV. - 1569-9048 .- 1878-1519. ; 148:1-2, s. 113-23
  • Journal article (peer-reviewed)abstract
    • Gravito-inertial load in the head-to-foot direction (Gz) and compression of the lower body half by an anti-G suit (AGS) are both known to influence ventilation distribution in the lungs. To study the interaction of Gz and AGS and to asses the separate contributions from lower limbs and abdominal compressions to large and small-scale ventilation inhomogeneities nine males performed SF6/He vital capacity (VC) single-breath washouts at 1, 2, and 3 Gz in a centrifuge, with abdominal and/or lower limbs compressions. SF6/He and (SF6-He) phase III slopes were used for determination of overall and small-scale ventilation inhomogeneity. Closing volume and phase IV height were used as measures of large-scale inhomogeneity. VC decreased marginally with G-load but markedly with lower limbs compression. Small-scale ventilation inhomogeneity increased slightly with G-load, but substantially with AGS pressurization. Small-scale ventilation inhomogeneity increased with AGS pressurization. Large-scale inhomogeneity increased markedly with G-load. Translocation of blood to the lungs might be the key determinant for changes in small-scale ventilation inhomogeneity when pressurizing an AGS.
  •  
3.
  •  
4.
  • Strömberg, N O, et al. (author)
  • Improved accuracy and extended flow range for a Fleisch pneumotachograph
  • 1999
  • In: Medical and Biological Engineering and Computing. - 0140-0118 .- 1741-0444. ; 37:4, s. 456-460
  • Journal article (peer-reviewed)abstract
    • A large linear flow range and a small instrumental dead space volume are incompatible properties for a pneumotachometer (PTM). The linearity of a Fleisch number 2 PTM is studied for flows up to 6 litre s-1 (nominal range 0-2 litre s-1) with various up- and downstream geometries. It is hypothesised that using an array of calibration factors (conductance; flow/pressure), instead of a single calibration factor over the entire flow range, could improve accuracy and also extend the applicable flow range. The conductance against pressure characteristics are calculated with a previously described weighted averaging technique based on multiple strokes from a precision syringe. A single conductance value gives stroke volume errors in the range of -5 to 3% (0-2 litre s-1) and -6 to 11% (0-6 litre s-1) for validation using the same geometry as for calibration. The pressure dependent conductance improves accuracy to within -3% and 1% independent of flow range. However, for validation using a different geometry than for calibration, errors range from -5% to +8%. The degree of non-linearity varies between the geometries (range 3-15%) and is highest when using a one-directional valve upstream of the PTM and a Y-shaped connector. In conclusion, a pressure-dependent conductance improves accuracy and can also be used to extend the applicable flow range up to at least three times the nominal flow range.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view