SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Graae B J) "

Sökning: WFRF:(Graae B J)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Moles, A. T., et al. (författare)
  • Putting plant resistance traits on the map : A test of the idea that plants are better defended at lower latitudes
  • 2011
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 191:3, s. 777-788
  • Tidskriftsartikel (refereegranskat)abstract
    • It has long been believed that plant species from the tropics have higher levels of traits associated with resistance to herbivores than do species from higher latitudes. A meta-analysis recently showed that the published literature does not support this theory. However, the idea has never been tested using data gathered with consistent methods from a wide range of latitudes. • We quantified the relationship between latitude and a broad range of chemical and physical traits across 301 species from 75 sites world-wide. • Six putative resistance traits, including tannins, the concentration of lipids (an indicator of oils, waxes and resins), and leaf toughness were greater in high-latitude species. Six traits, including cyanide production and the presence of spines, were unrelated to latitude. Only ash content (an indicator of inorganic substances such as calcium oxalates and phytoliths) and the properties of species with delayed greening were higher in the tropics. • Our results do not support the hypothesis that tropical plants have higher levels of resistance traits than do plants from higher latitudes. If anything, plants have higher resistance toward the poles. The greater resistance traits of high-latitude species might be explained by the greater cost of losing a given amount of leaf tissue in low-productivity environments. © 2011 New Phytologist Trust.
  •  
3.
  • Staude, I. R., et al. (författare)
  • Directional turnover towards larger-ranged plants over time and across habitats
  • 2022
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 25:2, s. 466-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.
  •  
4.
  • Lembrechts, Jonas J., et al. (författare)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Tidskriftsartikel (refereegranskat)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
5.
  • Moles, Angela T, et al. (författare)
  • Correlations between physical and chemical defences in plants : tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?
  • 2013
  • Ingår i: New Phytologist. - : Wiley-Blackwell. - 0028-646X .- 1469-8137. ; 198:1, s. 252-263
  • Tidskriftsartikel (refereegranskat)abstract
    • Most plant species have a range of traits that deter herbivores. However, understanding of how different defences are related to one another is surprisingly weak. Many authors argue that defence traits trade off against one another, while others argue that they form coordinated defence syndromes. We collected a dataset of unprecedented taxonomic and geographic scope (261 species spanning 80 families, from 75 sites across the globe) to investigate relationships among four chemical and six physical defences. Five of the 45 pairwise correlations between defence traits were significant and three of these were tradeoffs. The relationship between species' overall chemical and physical defence levels was marginally nonsignificant (P=0.08), and remained nonsignificant after accounting for phylogeny, growth form and abundance. Neither categorical principal component analysis (PCA) nor hierarchical cluster analysis supported the idea that species displayed defence syndromes. Our results do not support arguments for tradeoffs or for coordinated defence syndromes. Rather, plants display a range of combinations of defence traits. We suggest this lack of consistent defence syndromes may be adaptive, resulting from selective pressure to deploy a different combination of defences to coexisting species.
  •  
6.
  • De Frenne, P., et al. (författare)
  • Atmospheric nitrogen deposition on petals enhances seed quality of the forest herb Anemone nemorosa
  • 2018
  • Ingår i: Plant Biology. - : Wiley. - 1435-8603 .- 1438-8677. ; 20:3, s. 619-626
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated atmospheric input of nitrogen (N) is currently affecting plant biodiversity and ecosystem functioning. The growth and survival of numerous plant species is known to respond strongly to N fertilisation. Yet, few studies have assessed the effects of N deposition on seed quality and reproductive performance, which is an important life-history stage of plants. Here we address this knowledge gap by assessing the effects of atmospheric N deposition on seed quality of the ancient forest herb Anemone nemorosa using two complementary approaches. By taking advantage of the wide spatiotemporal variation in N deposition rates in pan-European temperate and boreal forests over 2years, we detected positive effects of N deposition on the N concentration (percentage N per unit seed mass, increased from 2.8% to 4.1%) and N content (total N mass per seed more than doubled) of A.nemorosa seeds. In a complementary experiment, we applied ammonium nitrate to aboveground plant tissues and the soil surface to determine whether dissolved N sources in precipitation could be incorporated into seeds. Although the addition of N to leaves and the soil surface had no effect, a concentrated N solution applied to petals during anthesis resulted in increased seed mass, seed N concentration and N content. Our results demonstrate that N deposition on the petals enhances bioaccumulation of N in the seeds of A.nemorosa. Enhanced atmospheric inputs of N can thus not only affect growth and population dynamics via root or canopy uptake, but can also influence seed quality and reproduction via intake through the inflorescences.
  •  
7.
  • Reinecke, J., et al. (författare)
  • Acido- and neutrophilic temperate forest plants display distinct shifts in ecological pH niche across north-western Europe
  • 2016
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 39:12, s. 1164-1175
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological niches of organisms vary across geographical space, but niche shift patterns between regions and the underlying mechanisms remain largely unexplored. We studied shifts in the pH niche of 42 temperate forest plant species across a latitudinal gradient from northern France to boreo-nemoral Sweden. We asked 1) whether species restrict their niches with increasing latitude as they reach their northern range margin (environmental constraints); 2) whether species expand their niches with increasing latitude as regional plant species richness decreases (competitive release); and 3) whether species shift their niche position toward more acidic sites with increasing latitude as the relative proportion of acidic soils increases (local adaptation). Based on 1458 vegetation plots and corresponding soil pH values, we modelled species response curves using Huisman-Olff-Fresco models. Four niche measures (width, position, left and right border) were compared among regions by randomization tests. We found that with increasing latitude, neutrophilic species tended to retreat from acidic sites, indicating that these species retreat to more favorable sites when approaching their range margin. Alternatively, these species might benefit from enhanced nitrogen deposition on formerly nutrient-poor, acidic sites in southern regions or lag behind in post-glacial recolonization of potential habitats in northern regions. Most acidophilic species extended their niche toward more base-rich sites with increasing latitude, indicating competitive release from neutrophilic species. Alternatively, acidophilic species might benefit from optimal climatic conditions in the north where some have their core distribution area. Shifts in the niche position suggested that local adaptation is of minor importance. We conclude that shifts in the pH niche of temperate forest plants are the rule, but the directions of the niche shifts and possible explanations vary. Our study demonstrates that differentiating between acidophilic and neutrophilic species is crucial to identify general patterns and underlying mechanisms.
  •  
8.
  • Caron, M. M., et al. (författare)
  • Divergent regeneration responses of two closely related tree species to direct abiotic and indirect biotic effects of climate change
  • 2015
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127 .- 1872-7042. ; 342, s. 21-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Changing temperature and precipitation can strongly influence plant reproduction. However, also biotic interactions might indirectly affect the reproduction and recruitment success of plants in the context of climate change. Information about the interactive effects of changes in abiotic and biotic factors is essential, but still largely lacking, to better understand the potential effects of a changing climate on plant populations. Here we analyze the regeneration from seeds of Acer platanoides and Acer pseudoplatanus, two currently secondary forest tree species from seven regions along a 2200 km-wide latitudinal gradient in Europe. We assessed the germination, seedling survival and growth during two years in a common garden experiment where temperature, precipitation and competition with the understory vegetation were manipulated. A. platanoides was more sensitive to changes in biotic conditions while A. pseudoplatanus was affected by both abiotic and biotic changes. In general, competition reduced (in A. platanoides) and warming enhanced (in A. pseudoplatanus) germination and survival, respectively. Reduced competition strongly increased the growth of A. platanoides seedlings. Seedling responses were independent of the conditions experienced by the mother tree during seed production and maturation. Our results indicate that, due to the negative effects of competition on the regeneration of A. platanoides, it is likely that under stronger competition (projected under future climatic conditions) this species will be negatively affected in terms of germination, survival and seedling biomass. Climate-change experiments including both abiotic and biotic factors constitute a key step forward to better understand the response of tree species' regeneration to climate change.
  •  
9.
  •  
10.
  • Graae, Bente J., et al. (författare)
  • Stay or go - how topographic complexity influences alpine plant population and community responses to climate change
  • 2018
  • Ingår i: Perspectives in plant ecology, evolution and systematics. - : Elsevier BV. - 1433-8319 .- 1618-0437. ; 30, s. 41-50
  • Tidskriftsartikel (refereegranskat)abstract
    • In the face of climate change, populations have two survival options - they can remain in situ and tolerate the new climatic conditions (stay), or they can move to track their climatic niches (go). For sessile and small-stature organisms like alpine plants, staying requires broad climatic tolerances, realized niche shifts due to changing biotic interactions, acclimation through plasticity, or rapid genetic adaptation. Going, in contrast, requires good dispersal and colonization capacities. Neither the magnitude of climate change experienced locally nor the capacities required for staying/going in response to climate change are constant across landscapes, and both aspects may be strongly affected by local microclimatic variation associated with topographic complexity. We combine ideas from population and community ecology to discuss the effects of topographic complexity in the landscape on the immediate stay or go opportunities of local populations and communities, and on the selective pressures that may have shaped the stay or go capacities of the species occupying contrasting landscapes. We demonstrate, using example landscapes of different topographical complexity, how species' thermal niches could be distributed across these landscapes, and how these, in turn, may affect many population and community ecological processes that are related to adaptation or dispersal. Focusing on treeless alpine or Arctic landscapes, where temperature is expected to be a strong determinant, our theorethical framework leads to the hypothesis that populations and communities of topographically complex (rough and patchy) landscapes should be both more resistant and more resilient to climate change than those of topographically simple (flat and homogeneous) landscapes. Our theorethical framework further points to how meta-community dynamics such as mass effects in topographically complex landscapes and extinction lags in simple landscapes, may mask and delay the long-term outcomes of these landscape differences under rapidly changing climates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy